
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 3, Mar. 2021 952

Copyright ⓒ 2021 KSII

http://doi.org/10.3837/tiis.2021.03.008 ISSN : 1976-7277

A Survey of Computational Offloading in
Cloud/Edge-based Architectures:

Strategies, Optimization Models and
Challenges

Manal M. Alqarni1,2*, Asma Cherif1, and Entisar Alkayal3

1 King Abdulaziz University, Faculty of Computing and Information Technology

Department of Information Technology

Jeddah 8030, Saudi Arabia

 [e-mail: malqarni0323@stu.kau.edu.sa, acherif@.kau.edu.sa]
2 Taif University, Faculty of Computing and Information Technology

Department of Information Technology

Taif, Saudi Arabia
3 King Abdulaziz University, Faculty of Computing and Information Technology,

Department of Information Technology

Rabigh, Saudi Arabia

 [e-mail: ealkayyal@kau.edu.sa]
*Corresponding author: Manal M. Alqarni

Received October 28, 2020; revised January 12, 2021; accepted March 3, 2021;

published March 31, 2021

Abstract

In recent years, mobile devices have become an essential part of daily life. More and

more applications are being supported by mobile devices thanks to edge computing,

which represents an emergent architecture that provides computing, storage, and

networking capabilities for mobile devices. In edge computing, heavy tasks are offloaded

to edge nodes to alleviate the computations on the mobile side. However, offloading

computational tasks may incur extra energy consumption and delays due to network

congestion and server queues. Therefore, it is necessary to optimize offloading decisions

to minimize time, energy, and payment costs.

In this article, different offloading models are examined to identify the offloading

parameters that need to be optimized. The paper investigates and compares several

optimization techniques used to optimize offloading decisions, specifically Swarm

Intelligence (SI) models, since they are best suited to the distributed aspect of edge

computing. Furthermore, based on the literature review, this study concludes that a

Cuckoo Search Algorithm (CSA) in an edge-based architecture is a good solution for

balancing energy consumption, time, and cost.

Keywords: Offloading, Optimization, Swarm Intelligence, MEC, Edge, Cloud Computing

about:blank
mailto:acherif@.kau.edu.sa

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 3, March 2021 953

1. Introduction

Over the last decade, mobile computing has been growing exponentially. According to [1],

78.1 billion people were using mobile devices in 2017. It is expected that this number will

reach 258.2 billion by 2022 [1]. Indeed, mobile devices as smartphones, tablets, or even

sensors provide a wide range of services and applications to end-users [2]. For example, real-

time applications (such as e-commerce applications, gaming applications, and healthcare

applications) that require significant computing resources for a high level of responsiveness,

are becoming increasingly managed by these mobile devices [2]. However, mobile devices

face a significant challenge because they lack certain crucial resources, particularly those

related to storage capacity, computation power, bandwidth, and battery.

The Mobile Cloud Computing (MCC) paradigm was introduced as a way to overcome these

limitations through the integration of mobile computing and cloud computing [2]. The

paradigm migrates the computation and data of mobile applications into cloud data centers,

which reduces mobile terminal overhead [3]. The cloud infrastructure in MCC is based on the

idea of a pool of resources made available to end-users through several deployment models

such as public and private clouds and services models. Advantages of the cloud include its

position as a pay per use model that requires minimal management effort, etc. [4].

As mobile applications have become more ubiquitous in daily life, the requirement for high

computation and short response time has also increased. However, the centralization of MCC

increases the delay of computation responses, which harms the functionality of real-time

applications. To address this issue, the Mobile Edge Computing (MEC) paradigm was

proposed in September 2013 by the European Telecommunication Standard Institute (ETSI).

MEC has a decentralized architecture based on three layers, which are the mobile device layer,

the edge layer, and the cloud layer, as shown in Fig. 1. According to this paradigm, mobile

devices can offload their operations and data into the edge layer through wireless

communication to minimize the delays incurred by MCC.

MEC architecture offers MCC services through a Radio Access Network (RAN) at the edge

layer of the mobile network, which is closer to mobile devices. MEC servers make the

computations at MEC servers in base stations of a RAN, which reduces the occurrence of

bottlenecks at data centers [2].

Fig. 1. MEC architecture [5]

Computational offloading has been proposed as a way of overcoming the resource

limitations of mobile devices. Computational offloading is defined as the process of sending a

task and related data to remote rich resources like cloud servers or edge servers to be processed

as needed [2]. Several factors affect the offloading decision, including local device resources

such as CPU, storage, and battery consumption, as well as delay in transformation through the

network and the magnitude of the transferred data [3].

954 Alqarni et al.: A Survey of Computational Offloading in Cloud/Edge-based Architectures:
Strategies, Optimization Models and Challenges

The MEC paradigm has emerged as the most popular model for mobile application

offloading due to its capacity to reduce execution time, energy consumption, and delays.

However, offloaded tasks may still face some issues such as waiting a long time in queues and

network congestion. Therefore, it is necessary to optimize the offloading decisions to save

time, energy, and cost [3].

Several studies have discussed MCC from several perspectives in order to review

computation offloading. For instance, Gu et al. [4] reviewed enabling techniques and different

computational resources used for partitioning and offloading. Besides, Azam [6] examined the

technologies used for offloading in fog computing; Wang et al. [7] investigated computation

offloading in MEC without considering optimization techniques, and Satria et al. [8] examined

the optimization techniques applied in MCC.

Though many approaches have been proposed for computation offloading in the MCC

architecture, there is a lack of a comparative study between these solutions. Moreover, none

of the previous reviews has discussed the optimization techniques for computation offloading

in MEC. Meanwhile, it is required to investigate AI-based models to fill the gap and propose

a model that suits the characteristics of distributed edge-based architectures which serves

distributed architectures besides QoS of real-time applications.

For these reasons, this paper investigates both offloading in general and its optimization

models, specifically AI-based ones, with an emphasis on architectural design to identify the

main parameters that should be taken into account for an optimized offloading model that fits

edge computing. Thus, the paper offers an in-depth study of offloading and valuable support

for researchers to investigate the optimization of computational offloading.

The main contributions of this paper are:

1) The presentation of an overview of existing literature and research related to

computational offloading strategies including a comparison of offloading strategies in terms

of architecture, application partitioning, resource allocation decisions, researchers’

contributions, advantages, and disadvantages.

2) The provision of a comprehensive taxonomy of optimized offloading strategies.

3) A comparison of several AI algorithms used in the computational offloading process in

terms of payment cost, time, energy, scalability, resource utilization, queue congestion, and

the number of iterations.

The remainder of this article is organized as follows: A general overview of offloading is

presented in Section 2. In Section 3, the optimization offloading models are surveyed and

discussed. In Section 4, the main challenges and some future directions are presented. Finally,

Section 4 concludes the paper.

2. General Overview on Offloading

The following section presents the main offloading types, strategies, and partitioning processes.

2.1 Offloading Types

In general, there are two main types of offloading: data offloading and computation offloading.

Data offloading is used to transfer data from a mobile device, which has limited storage and

capacity, into a repository located in the cloud. Zhang [9] investigated the process of data

offloading from multi-mobile devices to multi-MEC servers. He proposed a game-centric

pricing scheme in order to prioritize the data offloading according to mobile device and

resource allocation through MEC. In addition, Xu et al. [10] investigated both the privacy and

time consumption of data offloading in the edge system. They proposed a time-efficient

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 3, March 2021 955

offloading method (TEO) that included privacy conservation. According to their proposed

method, they used an improved Strength Pareto Evolutionary Algorithm (SPEA2) to minimize

time consumption and maximize the privacy of data. The experimental results demonstrated

the reliability and efficiency of the TEO model. Similarly, Liu et al. [11] sought to minimize

the cost of data offloading by proposing hybrid mobile offloading approaches according to the

used network (D2D or WIFI). They based their proposal on the Finite Horizon Markov

Decision Process (FHMDP). They also proposed an offloading algorithm for several time

requirements (i.e. wide or tight). Furthermore, they used a monotone offloading algorithm to

minimize the complexity of the offloading process.

Computation offloading is used to process intensive applications remotely in order to obtain

benefits from powerful resources in cloud (or edge) servers that overcome the CPU and battery

limitations on the mobile side [12]. In addition, the computation offloading can be applied in

different infrastructures, such as MCC, MEC, and fog, as shown in Fig. 2.

Fig. 2. Offloading architecture

Computation offloading can be static or dynamic. Static offloading first estimates

offloading performance using offline profiling or models of performance estimation. Then, the

application is partitioned into two main parts (locally and remotely executed), as presented in

Fig. 3(a) [12]. The dynamic offloading (see Fig. 3(b)) starts with static analysis of the

application’s code and the required resources. Then, at run-time, dynamic profiling is

conducted to partition the application into two main parts (locally and remotely executed) [12].

(a) Static offloading (b) Dynamic offloading

Fig. 3. Static and dynamic offloading

956 Alqarni et al.: A Survey of Computational Offloading in Cloud/Edge-based Architectures:
Strategies, Optimization Models and Challenges

2.2 Offloading Strategies

The main offloading modes are binary and partial, as shown in Fig. 4. In the binary mode, the

task is offloaded without partitioning [13-18]. On the other hand, the partial offloading mode

includes task partitioning. So, some parts are processed locally, and some are offloaded

remotely [19-21]. The partial offloading strategy can be classified into three categories: static,

dynamic, or hybrid, as discussed in the next section.

Fig. 4. Offloading strategies

It is important to note that partial offloading is more efficient. It has become the most used

strategy in current frameworks because it reduces energy consumption, queue overhead, and

transformation delay [4].

To achieve partial offloading, the application should be partitioned into different parts

based on a specific granularity. This can be done statically, dynamically, or both. Static

application partitioning consists of dividing the application into parts. This should be carried

out by the developer at the design phase. Static partitioning improves the resource allocation

process in terms of time because it reduces the partitioning time. However, it cannot be adapted

easily to run-time changes such as environmental changes (bandwidth, resource conditions,

etc.) [4].

Unlike static partitioning, dynamic partitioning splits the application into tasks at run time.

It can be easily adapted to environmental changes automatically. Nevertheless, this

partitioning technique is more challenging and time-consuming. An example of a framework

that uses dynamic partitioning is the one suggested by Kovachev et al. [13]: a Mobile

Augmentation Cloud Services (MACS) middleware that can be integrated with an existing

Android application model to provide an adaptive model that allows for elastic offloading from

mobile devices into the cloud. According to this model, a service manager is used to register

each service. When an application invokes a service, the Android platform will create a proxy

in that service. Another example is Clonecloud proposed by Chun et al. [14], which integrates

both static application analyses and dynamic application partitioning in order to achieve the

advantages of both.

2.3 Computational Offloading Challenges and Issues

This section presents the main challenges that appear in MEC environments through the

computational offloading process.

- Resource allocation: One of the main challenges related to determining the number of

resources needed to execute a task. If the resources are few, then the offload process will be

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 3, March 2021 957

most encouraged. On the other hand, when the available resources are more than what the

service requires, then the system will be under-utilized [15].

- Scalability: Real-time applications are often executed by various users at the same time,

which is handled by different algorithms responsible for many requests from users. However,

to allow the application to scale up without harm, the offloading process must be optimized

[16].

- Security: Through the offloading process, tasks and users’ data are moved through the

network, which increases the risk of data theft and misuse. To overcome this issue, it is

necessary to involve a trustworthy entity when the offloading decision is made [17].

- The trade-off of energy consumption: The offloading process itself consumes energy and

bandwidth, so the offloading decision must be made according to this trade-off [16].

- Decision making: It is a challenge to decide whether to offload a task due to several

parameters, such as delay, energy, or payment costs [18].

- Availability: Mobile devices have to connect to the edge/cloud all the time, which is

challenging due to lack of network coverage, network congestion, low bandwidth, and any

other network-related failures [16].

- Mobility: This presents a significant challenge when connecting to the edge [19].

- Load balancing: The edge node or datacentre may be overloaded at any time, which leads

to delays and, in some situations, incorrect results. To avoid this, load-balance is used to share

tasks with other edge nodes that are underloaded [15].

- Resource utilization: The number of resources on the edge is limited compared to the cloud

infrastructure. Thus, resource utilization management is required in order to gain the most

benefits from limited resources without causing system overhead [20].

The next sections present the main offloading frameworks proposed in the existing

literature.

2.4 Main Computational Offloading Frameworks

This section investigates the main computational offloading frameworks proposed by

researchers to enhance different parameters such as time, energy, scalability, etc. Some of

them are investigated in relation to edge and others are investigated in relation to MCC.

Shu et al. [21] focused on the energy and delay trade-off of data offloading scheduling.

They proposed the eTime — a strategy of data transmission between mobile devices and the

cloud in which the offloading decision was conducted online in order to improve scheduling

and make it time adaptive. To reduce the energy consumed by the communication, the eTime

used online data traffic information to decide when it would send data remotely. This model

was based on the energy-delay trade-off algorithm.

Zhang et al. [22] proposed a theoretical framework to reduce energy consumption based on

wireless condition parameters for application offloading decisions. They used a threshold

policy based on the wireless transmission model and the ratio of energy coefficients of the

computation in both the mobile and cloud environments.

Kosta et al. [23] proposed ThinkAir, an offloading framework that supported dynamic

resource allocation. The framework was based on a Virtual Machine (VM) and operated the

virtualization on the cloud. Overall, their ThinkAir architecture was composed of three

components: profilers, an application server, and an execution controller. At the mobile device,

there were profilers (hardware, software, and network) that collected data and sent them to the

energy prediction model, which dynamically assessed the local run of the task and transmitted

the results to the execution controller. Then, the offloading decision was made based on data

such as energy consumption and execution time of the previous tasks. ThinkAir demonstrated

958 Alqarni et al.: A Survey of Computational Offloading in Cloud/Edge-based Architectures:
Strategies, Optimization Models and Challenges

many benefits such as reduced energy consumption, reduced execution due to the parallelism

of the VMs, and improved scalability. However, the authors noted that sensitive applications

require more security arrangements.

Khanna et al. [24] proposed a Mobile Computation Offloading (MCO) model that

offloaded application tasks into the cloud. The MCO was composed of four components, some

of which worked on the mobile and others on the cloud. On the mobile side, the device profiler

divided the application into several tasks and categorized them into tasks carried out locally

or offloaded. Furthermore, the application analyzer component, which worked on the cloud,

identified the energy and time consumption of the task. Then, it decided whether the task

should be executed locally or remotely. Also, a network profiler component computed the

transmission cost of the task. Then, the decision engine in the cloud took input from the

application analyzer and network profiler to decide whether the task should be offloaded or

not. According to the simulation results, the offloaded tasks consumed less execution time

than the local tasks. Besides, with more offloaded tasks the execution time eventually

increased, and energy consumption decreased. However, the model was not scalable because

it was affected by the increasing number of tasks.

Orisini et al. [25] proposed the CloudAware framework for offloading tasks into mobile

edge computing. They posited that the CloudAware framework would support ad-hoc and real-

time communication and integrates computation offloading with context adaptation using the

knowledge of developers as well as the component scheme to make the offloading decision.

However, the authors presented their architecture without implementation or testing.

Meurisch et al. [26] investigated the problem of how to make an offloading decision for

unknown systems. To address this issue, they sent a micro-task to the computing system to

evaluate the computing system and the existing network. Their calculation was based on

different parameters such as completion time, data size, network bandwidth, and energy

consumption. Then, to offload larger tasks, they used a polynomial regression model to predict

the cost and time. The experiments revealed accuracy of up to 85.5% when sending two micro

tasks to predict the cost and performance.

Habak et al. [27] created the Femtocloud system, which leveraged from nearby mobile

devices’ capabilities to produce a collaborative computation cluster in stable environments

like classrooms and coffee shops where people commonly gather. This framework

demonstrated the advantage of being more scalable than the cloudlet. In addition, it was based

on cooperative, unfixed services at the edge layer of the network. The authors’ evaluation of

their proposed system was based on both experiments and simulations and proved that the

system was efficient in terms of energy and computation and also reduced latency.

Liu et al. [28] investigated vehicles as mobile edge servers that could serve mobile devices

as well as fixed edge servers and proposed a vehicle edge computing operating architecture.

They formulated an optimization problem to increase the utilization of the system, which they

converted into a semi-Markov problem in order to manage the dynamic nature of the vehicles,

communication time, and offloading requests. Furthermore, they used Q-Learning and Deep

Reinforcement Learning (DRL) to identify the most appropriate policies of resource allocation

and computation offloading procedures. The evaluation results indicated that their system may

achieve greater performance than fixed and vehicle systems.

Huang et al. [29] investigated wireless powered MEC networks. They created a deep

learning based online offloading algorithm — DROO, which split the optimization problem

into two sub-problems: resource allocation and offloading decision. Their evaluation results

demonstrated the successful performance of the proposed algorithm.

A summary of these main offloading frameworks is presented in Table 1.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 3, March 2021 959

Table 1. Summary of main offloading frameworks

R
e
f

A
r
c
h

.

O
ff

lo
a
d

in
g

S
tr

a
te

g
y

P
a
r
ti

ti
o

n
in

g

T
y
p

e

R
e
so

u
r
c
e

a
ll

o
c
.

d
e
c
is

io
n

P
a
r
a
m

e
te

r
s

P
r
o
s

C
o
n

s

T
e
st

in
g

[21] MCC Binary - -
Energy +

time

Offloading decision depends

on network+ queues

conditions

Centralized

S
im

u
la

ti
o
n
/e

x
p

er
im

en
ts

[22] MCC Binary - - Energy Reduces energy Theoretical only -

[13] MCC Partial
Dyna

mic
Online Energy

Lightweight offloading +

Low latency and energy +

Programmer assistance

Not generic (depends on

android application model) +

high profiler overhead + needs

application developer support

E
x

p
er

im
en

ts

[14] MCC Partial
Hybr

id
- Energy Low energy Centralized

E
x

p
er

im
en

ts

[23] MCC Partial
Dyna

mic
Online

Time +

Energy

Low energy + scalability +

high efficiency
Synchronization overheads

E
x

p
er

im
en

ts

[24] MCC Partial
Dyna

mic
-

Time +

Energy

Low execution time +

energy + support

programmers

Not scalable (sensitive to high

number tasks)

S
im

u
la

ti
o

n

(c
lo

u
d

S
im

)

[25] MEC Partial

Static

/

dyna

mic

Online
Time +

Energy

Low time + improve

offloading decision

Static architecture (based on the

well-defined hierarchy between

fog and cloud)

[26]

Cloud

/

cloud

let

Partial - Online

Time+

Energy+

Bandwidt

h

85% of accuracy prediction

+ flexibility + low cost

overhead

More tasks lead to more cost

consumption

E
x
p
er

im
en

ts

[27] MEC Partial - Online

Time+

Energy+

Computin

g

utilization

Low latency and energy +

improved computational

efficiency

Not flexible with changing the

connection time + security

issues

S
im

u
la

ti
o
n
/

ex
p
er

im
en

ts

960 Alqarni et al.: A Survey of Computational Offloading in Cloud/Edge-based Architectures:
Strategies, Optimization Models and Challenges

[30] MEC Binary - Online
Time+

Energy

Task delay reduced by 20%

+ the energy is saved by

30%

Not consider the payment cost

or bandwidth

S
im

u
la

ti
o
n

[28] MEC Binary - Online

Resource

utilization

+ resource

allocation

Low delay of allocating

resource + higher utility

Higher payment cost than local

computation

S
im

u
la

ti
o
n

[29] MEC Binary - Online

Dynamic

offloading

decision +

resource

allocation

based on

time

variation

of wireless

channels

Low time + resource

allocation

Not flexible to implement on

dynamic mobile devices

S
im

u
la

ti
o
n

3. Optimization Models for Offloading

The following section presents a general overview of existing optimization techniques,

classifications, and applications. This is followed by an investigation of some relevant research

focused on offloading optimization and a comparison of the proposed frameworks.

3.1 Overview of Optimization Techniques

Optimization can be defined as the performance of an action, which can be a formula or a

model, to make something, like a system or a decision, as perfect as possible. It can also be

referred to as “a mathematical discipline that concerns the finding of the extreme (minima and

maxima) of numbers, functions, or systems” [31]. That is, it involves the maximization and

minimization of functions. Optimization techniques are used to solve an optimization problem

which can be single- or multi-objective. Single-objective optimization is used to solve a single

objective function to give one optimal solution; multi-objective optimization is used to solve

many objectives at the same time and gives many solutions rather than a single optimal

solution [32, 33].

Optimization techniques can be classified as linear and nonlinear programming

optimization. Linear programming optimization is a linear objective function that seeks to

maximize or minimize objectives to linear constraints. On the other hand, nonlinear

programming aims to maximize or minimize nonlinear objective functions [33]. Furthermore,

nonlinear programming can be classified into deterministic and stochastic, as presented in Fig.

5 [32, 33].

Deterministic optimization methods follow strict mathematical models, which are based on

linear programming that seeks to guarantee the most accurate and frequent solution, i.e., with

the same input, it will achieve the same output every time. However, in this case, the optimal

solution is mostly local and cannot be global. Thus, deterministic optimization methods better

fit single-objective problems than multi-objective problems [33].

On the other hand, stochastic optimization methods do not produce a guaranteed solution,

because they are based on searches with random variables. Indeed, for every iteration, different

outputs may be produced for the same input. Nevertheless, although they don’t provide an

exact solution, stochastic optimization methods have the advantage of being adaptive, i.e., they

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 3, March 2021 961

can be used for any optimization problem either in local or global search. Moreover, they

produce an approximated solution in an acceptable time [31].

Stochastic optimization can be classified into two main categories: heuristic and meta-

heuristic algorithms. The evolution of the heuristic category has produced meta-heuristic

algorithms that combine random processing and global optimization [34]. The meta-heuristic

category can be further classified into Evolutionary Algorithms (EA) and Swarm Intelligence

(SI) algorithms [31]. EA are inspired by biological evolution to find the nearest optimal

solution. They are used to solve local optimization problems using random searches [33].

Many EA have been proposed by researchers, including evolution strategies; genetic

programming, which uses computers to produce solutions as programs; and genetic algorithms,

which are inspired by biological genetics and their solutions represented as series of strings

[35].

In particular, SI is an artificial intelligence scheme based on self-organized and distributed

algorithms. It was inspired by the behavior of social animals like birds, fish, and insects, such

as Particle Swarm Optimization (PSO), Cuckoo Search Algorithm (CSA), Monkey Algorithm

(MA), etc. [36].

Fig. 5. Optimization techniques

3.2 Proposed Optimization Models for Offloading Decision

The following section presents several models that researchers have proposed for optimizing

the offloading decision. Here, they are classified according to the optimization technique used.

3.2.1 Deterministic Optimization Models

Pinherio et al. [2] discussed the cost of accurate offloading decisions for cloud service

providers. They proposed using a Stochastic Petri Net (SPN) framework, which an extension

of Petri Net (PN). The role of an SPN is to predict the performance of an application, data

traffic through the offloading process, and finally the offloading cost. This prediction is made

at method-call-level, which generates highly accurate estimations. Moreover, an SPN

considers the network bandwidth used to send and receive methods. It therefore helps

developers at the design phase to develop their applications with accurate information about

application performance and cost prediction.

Wang et al. [7] focused on two main problems: minimizing energy consumption and

latency. For latency, they proposed offloading tasks from smartphones to Femtoclouds at the

edge layer. In addition, they argued that tasks could be executed in parallel to reduce time.

962 Alqarni et al.: A Survey of Computational Offloading in Cloud/Edge-based Architectures:
Strategies, Optimization Models and Challenges

Moreover, they proposed using Latency-optimal Partial Computation Offloading (LPCO) to

reduce latency in many cloud server cases. For energy consumption, they used Dynamic

Voltage Scaling (DVS) technology that adapted smartphone computation speed based on the

computation load of the device. Moreover, they proposed using an Energy-optimal Partial

Computation Offloading (EPCO) algorithm to minimize energy consumption.

Liu et al. [37] investigated the fog layer in MCC. They discussed an offloading multi-

objective optimization problem that emphasized three parameters: energy consumption,

execution delay, and payment cost. Queuing theory was utilized to solve the weighted

optimization problem. The problem was formulated to minimize the three parameters

mentioned above. A scalarization method was used to convert the optimization problem from

multi- to single-objective. Also, the offloading probability and transmission power were

reconfigured in order to minimize energy consumption, execution delay, and payment cost.

Moreover, they used an Interior Point Method (IPM) algorithm in iteration processes to

increase accuracy. The simulation results showed that the performance of the proposed

solution was extremely high. However, some results showed that at a certain point, when the

number of offloading requests increased, the energy consumption and delay increased.

Zhao et al. [38] examined the computational offloading of mobile devices. They proposed

using an offloading algorithm for energy consumption oriented to reduce energy besides

constraints like transmission power and time. In their proposed algorithm, the mobile device

calculated the energy consumption of offloading to both cloud and fog. Then, it compared

these to identify the process with the lowest energy consumption. Their algorithm was based

on an architecture of three layers (mobile device, fog, and cloud). The simulation results

showed the proposed algorithm achieved higher performance and lower energy consumption

for one user, and the results for multiple users were left for future research.

Chen and Hao [30] investigated the optimization of task offloading in an ultra-dense

network. First, they proposed a system model of a Software Defined Ultra-Dense Network

(UT-UDN). They aimed to minimize both the task delay and energy consumption by

formulating a mixed-integer nonlinear programming optimization problem. They proposed

using a scheme called a Software Defined Task Offloading (SDTO) to break down the

optimization problem into two sub-problems. The first problem was a resource allocation

problem which was solved using Karush–Kuhn–Tucker (KKT) conditions. The second one

was a task placement problem, which was solved by a task placement algorithm. The

simulation results showed that task delay was reduced by 20% and 30% more energy was

conserved.

3.2.2 Heuristic Optimization Models

Du et al. [39] focused on the optimization of resource allocation at edge servers in order to

minimize task service costs and maximize the number of clients served per edge. To solve this

multi-optimization problem, they modified it into a deterministic optimization problem. Then,

they split it into sub-problems using Lyapunov optimization. They proposed an Online Joint

Task Offloading and Resource Allocation Algorithm (OJTORA) to solve these sub-problems.

The experimental results proved that OJTORA obtained greater performance than other

baseline strategies. However, they didn’t consider the bandwidth condition and mobility of

client services.

Thai et al. [40] proposed an approach for using a cooperative mobile edge computing

network to reduce energy and delay consumption. First, they formulated mixed resource

allocation and task offloading in MEC. Then, they proposed a relaxed solution with an

Improved Branch and Bound Algorithm (IBBA) to solve the mixed-integer nonlinear

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 3, March 2021 963

programming problem. They developed two solutions — an Interior Point Method (IPM) and

an Improved Branch and Bound Algorithm (IBBA) — to identify the optimal solution for edge

nodes and mobile users. The experiments showed the efficiency of both solutions regarding

time and energy consumption.

Xu et al. [41] proposed a system architecture and formulated an optimization problem to

minimize both energy and time consumption. The proposed system model involved many

mobile devices, one edge, and one cloud server. They assumed that the bandwidth between

the three layers was large enough to reject the bottleneck condition. The optimization problem

was a nonlinear mixed-integer programming problem. To solve it, they proposed two

algorithms — an Enumeration Algorithm and a Branch and Bound algorithm. The simulation

showed that the Branch and Bound Algorithm produced better results than the Enumeration

Algorithm.

3.2.3 Meta-Heuristic Optimization Models

Yang et al. [42] focused on minimizing the energy consumption and queue congestion of task

offloading to MEC. First, they proposed a mobile device classification algorithm to solve the

offloading decision problem. To solve the queuing congestion problem, they proposed using

the Promoted by Probability (PBP) mechanism, which organizes the priority of tasks in order

to reduce energy consumption. Then, they formulated a mixed-integer optimization problem

to minimize energy consumption and packet delay. They applied the krill herd meta-heuristic

optimization algorithm to solve the NP-hard optimization algorithm by optimizing the task

offloading decision while minimizing queuing congestion. The simulation results

demonstrated the high performance of their solution.

Dai et al. [43] investigated the resource allocation problem in wireless communication

technology at a MEC. At their system, the Access Node (AN) and edge-computing server

schedules carriers and corresponding computation resources. Then, results were sent back to

the device, which then decided either to offload or not based on these results. However, the

system model used an Orthogonal Frequency Division Multiplexing (OFDM) system that split

the existing channel into many sub-carriers to reduce offloaded data stream. The problem was

presented in a mathematical model and then broken into two sub-problems. The first aimed to

maximize the difference between a task’s completion time locally and remotely at the MEC,

and the second sought to compute the maximum uploading rate of the task. To address these

two problems, the authors proposed a Hybrid Quantum Behavior Particle Swarm Optimization

(HQPSO) that used the water-filling algorithm in sub-problem two to reduce the dimension of

the QPSO equation, which enforce the accuracy and speed of the solution. Simulations showed

that the accuracy and performance of the model were high. However, the model was still

outperformed by traditional binary searches by 5% regarding saved completion time and 10%

regarding accuracy.

Rashidi and Sharifain [44] proposed a model based on Ant Colony Optimization (ACO)

and Queue Decision Maker (QDM) — known as ACOQDM — for task assignment

optimization. They aimed to reduce completion time, communication time, power

consumption, and task drop rate, and improve load balancing through two layers of cloud

computing (cloudlets and cloud). When the tasks were offloaded to the cloudlet, they were put

in the proxy’s buffer to be sent to the dispatcher unit, which used a Decision Maker (DM) to

decide whether to send tasks to cloudlet or cloud serves. The DM used the information

generated by the repository and QDM and ACO algorithms to build its decision. First, the

QDM goal was to minimize the response time by computing the probability of assigning a task

into either a cloudlet or cloud. Then, the ACO used the task assignment probabilities and the

964 Alqarni et al.: A Survey of Computational Offloading in Cloud/Edge-based Architectures:
Strategies, Optimization Models and Challenges

communication time between the user and the specific cloudlet as an input to minimize the

communication time of the whole system. The ACOQDM successfully reduced the response

time, completion time, transition time, power consumption, and the drop rate of tasks.

Xu et al. [45] examined the task offloading of workflow applications in fog-cloud

environments in order to reduce the cost and the time of all tasks. They proposed an algorithm

for workflow scheduling. The scheduling method was based on an Improved Particle Swarm

Optimization (IPSO) algorithm and was a PSO algorithm integrated with inertia weight. Inertia

weight was used to enforce the searching ability of particles from the original PSO. It designs

the problem as a nonlinear decreasing function of both time and cost in global and local

practical searchability. The experiments showed that the reduction of cost and time was greater

than with the original PSO.

Ramezani et al. [46] proposed a task scheduling model using multi-objective optimization.

Their solution was based on minimizing execution time, transmission time, and execution cost

using Multi-Objective PSO (MOPSO), which is suitable for distributed systems. The system

fulfilled the required service requirements (mainly QoS); however, the study did not

investigate energy consumption or task prioritization.

Alexander and Joseph [47] examined computation offloading into cloud data centers. They

aimed to minimize cost and time and maximize resource utilization. To address this

optimization problem, they proposed a load-aware resource allocation based on the Cuckoo

Search Algorithm (CSA). The simulation results proved that the Cuckoo Algorithm reduced

time and cost and improved resource utilization compared with PSO.

Kaur and Mehta [48] applied Grey Wolf Optimization (GWO) to optimize the offloading

plan in order to increase performance and decrease time, cost, and energy. They focused on

the centralized architecture of cloud datacenters.

Goudarzi et al. [49] proposed using Fast Hybrid Multi-site Computation Offloading

(FHMCO) to identify the best application partitioning based on the size of the application in a

short time. First, the weighted cost model was used to reduce the energy and time consumption

of the process. Moreover, the authors used two decision algorithms: Optimized Multi-site

Offloading Problem (OMB&B) and Optimized Multi-site Particle Swarm Optimization

(OMPSO). OMB&B is usually used to identify the optimal solution for small scale

applications in a short time, mobile applications, whereas OMPSO is used to search in large

spaces and produce near-optimal solutions in a reasonable time. The simulation and

experiments proved that the FHMCO achieved better performance than alternative

frameworks. However, it was based on a centralized architecture.

Guo et al. [50] investigated the problem of offloading decision making as well as resource

and channel allocation. To minimize energy consumption, they used a Genetic Algorithm

based on a Computation Algorithm (GACA) to solve the mixed-integer non-linear

programming problem. Their simulation indicated that their solution was slow.

Huynh et al. [51] focused on minimizing time and energy consumption using resource

allocation and offloading decision making. Their model environment involved the use of

multi-user and multi-edge servers in heterogeneous networks. They formulated a mixed-

integer non-linear programming problem of resource allocation and offloading decision

making. To solve it, they divided it into two subproblems and proposed using a PSO-based

algorithm (JROPSO) to optimize resource allocation and computation offloading decisions

jointly. Their simulation results demonstrated the efficiency of the proposed algorithm.

Li et al. [52] examined green computation in ultra-dense networks using computation

offloading. They aimed to minimize energy and time consumption by using edge-based

architecture. Their proposed system involved multi-mobile devices, multi-small base stations

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 3, March 2021 965

(SBS), and one macro-base station (MBS). Each mobile device owned just one task. The

authors proposed using a computation offloading mechanism based on CSA to solve the non-

linear programming problem. The simulation results showed that the proposed CSA reduced

both time and energy consumption.

Min-Allah et al. [53] investigated implementing task scheduling and resource allocation in

MCC in order to minimize cost and time consumption in the offloading system. The authors

formulated an optimization problem to reduce both time and execution cost consumption.

Furthermore, they proposed a Hybrid Genetic and Cuckoo Search algorithm (HGCS) to solve

the optimization problem. They aimed to find an optimal schedule for a group of real-time

tasks in an optimal VM in the cloud. The simulation results proved the efficiency of the HGCS

compared with GA and CSA alone.

Finally, Arun and Prabu [54] considered job-sharing and load-balance in VMs of MCC.

They formulated an optimization problem, which is NP-hard, to minimize both time and cost.

To solve the optimization problem, they proposed using an accelerated CSA to identify a task

with minimum time and cost. The simulation results proved that the proposed solution was

stronger than other algorithms in terms of minimizing execution time, job-sharing value, used

bandwidth, transmission speed, and buffering overhead.

Table 2. Summary of offloading optimization techniques

Ref. Year Arch.

Optimiza

tion

Tech.

Optimization

Algo.
Parameters Method Limitation

[2] 2018 MCC
Determinis

tic
SPN

Time (communication +

completion)

Estimate the application

performance

It is not a context-aware offloading

application + not use energy as a

metric

[7] 2015 MEC
Determinis

tic
EPCO Time + energy

DVS technology to

optimize the

computation offloading

It focuses on improving the mobile

device without considering

computational resources

[43] 2017 MEC AI HQPSO
Time + number of

iterations
Resource allocation

5% less than binary search inaccuracy

assumed a single task for advice + single

thread for CPU

[37] 2017 Fog
Determinis

tic
Weight method

Time (execution) +

energy + cost
Queue theory

It does not consider the network

dynamic conditions as data traffic

and no resource allocation

considered

[36] 2017
Cloudlet/

Cloud
AI ACO-GA

Time + energy +

improving queue drop

rate + load balance

Queue theory Centralized architecture

[44] 2019 Cloud/ Fog AI

Workflow

scheduling based on

IPSO

Time + cost Task scheduling Centralized architecture

[46] 2013 Cloud AI MOPSO Time + cost Task scheduling Centralized architecture

[47] 2016 Cloud AI CSA
Time + cost + resource

utilization

Load aware resource

allocation
They only work in one data centre

[48] 2019 MCC AI GWO Time + energy + cost
Minimize execution

cost

The cost and time still higher than

the exhaustive approach

[49] 2017 MCC AI PSO Time + energy

Offloading partitioning

based on the size of the

mobile application

Centralized architecture

[38] 2017 Cloud/ Fog
Determinis

tic

Optimal energy

consumption

algorithm

Time + energy Resource allocation The model is a single user only

966 Alqarni et al.: A Survey of Computational Offloading in Cloud/Edge-based Architectures:
Strategies, Optimization Models and Challenges

[39] 2019 MEC Heuristic Lyapunov
Time + energy +

scalability
Resource allocation Based on static bandwidth allocation

[40] 2018 MEC Heuristic IBBA Time + energy Resource allocation Not considered the scalability

[41] 2019
MEC/Clou

d
Heuristic

Enumerating and

Branch + Bound

Algorithm

Time + energy
Task offloading

decision
Low speed of operation

[42] 2018 MEC
Meta-

heuristic
krill herd algorithm

Time + energy

+minimize queue

congestion

Resource allocation +

binary offloading

Not consider network resources +

heterogeneous of servers in the

system

[30] 2018 MEC
Determini

stic

KKT + task

placement

algorithm

Time + energy Resource allocation
Not consider the mobility of the

users

[50] 2018 MEC AI GACA Energy Resource allocation The solution is slow

[51] 2019 MEC AI JROPSO Time + energy

Resource allocation +

offloading decision

making

Dismiss the waiting and response

time

[52] 2019 MEC AI CSA Time + energy
Green computation +

computation offloading

Did not focus on the factors of SDN

ultra-dense network

[53] 2019 MCC AI HGCS Time + cost
Task scheduling +

resource allocation
Centralized architecture

[54] 2019 MCC AI CSA Time and cost
Job-sharing + load-

balance
Centralized architecture

3.3 Comparing Existing Solutions

The aforementioned solutions are summarized in Table 2, which shows that some proposed

optimization techniques for offloading optimization were deterministic and others were AI-

based. AI-based solutions are usually based on the use of an SI algorithm to optimize the

offloading process. Indeed, SI supports heterogeneous, global, and distributed environments

as MEC. Moreover, SI produced automatically, adaptability, and self-organization techniques.

For this, we investigate these solutions in greater detail in order to select the most appropriate

one to be applied in the research. To do so, the relevant criteria were defined as follows:

1) Algorithm: The SI algorithm is used to optimize offloading.

2) Distribution: Whether the architecture is centralized in a cloud or distributed at the edge

 layer.

3) Optimization parameters: The parameters considered in the optimization.

(1) Time: The total execution and transmission time for each task.

(2) Energy: The energy consumption for each task (execution and transmission).

(3) Cost: The payment cost of the application execution.

(4) Scalability: The ability of the application to scale up without harm.

(5) Resource utilization: The utilizing of limited resources without causing an overhead of

 the system.

(6) Load balance: The ability to share tasks with other edge nodes that are underloaded.

(7) Queue congestion: The avoiding of queue congestion when the arrival rate of the tasks

 succeeds the service rate, which causes system overhead.

(8) No. of iterations: This is related to the completion time of the task.

Based on the criteria, a comparison between SI-based models is presented in Table 3.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 3, March 2021 967

Table 3. Offloading techniques applied SI

R
e
q

u
ir

e
m

e
n

t

s/
 R

e
f

A
lg

o
r
it

h
m

D
is

tr
ib

u
ti

o

n

P
a

y
m

e
n

t

c
o

s
t

T
im

e

E
n

e
r
g

y

S
c
a
la

b
il

it
y

R
e
so

u
r
c
e

u
ti

li
z
a
ti

o
n

L
o
a
d

B
a
la

n
c
e

Q
u

e
u

e

c
o
n

g
e
st

io
n

N
o
 o

f

it
e
r
a
ti

o
n

s

[42]
krill herd

algorithm √ X √ √ X √ X √ X

[43] HQPSO √ X √ √ X X X X √

[44] ACO-GA √ X √ √ X X √ √ X

[45] IPSO √ √ √ X X X X X X

[46] MOPSO √ √ √ X X X X X X

[48] CSA X √ √ X X √ X X X

[48] GWO X X √ √ X X X X X

[49] PSO X X √ √ X X X X X

[50] GACA √ X X √ X X X X X

[51] JROPSO √ X √ √ X X X X X

[52] CSA √ X √ √ X X X X X

[53] HGCS X √ √ X X X X X X

[54] CSA X √ √ X X X X X X

Table 3 shows that most researchers have investigated the MEC environment due to its

decentralized infrastructure, which facilitates the avoidance of bottleneck issues. Researchers

have also mainly focused on time rather than energy and payment cost. The mathematical

equations of these parameters can be presented as follows:

1) Time: Includes processing time, transmission time, waiting time, and response time, which

is calculated as

𝑇𝑝=
S

𝑓
 (1)

where 𝑇𝑝is the task’s processing time, 𝑆 is the task size, and 𝑓 is the processing computation

time;

 𝑇𝑡 =
𝑆𝑖𝑛

𝐵
 (2)

where 𝑇𝑡 is the transmission delay, 𝑆𝑖𝑛is the size of the input data, and 𝐵 is the bandwidth

between a mobile device and the edge node;

 𝑇𝑟 =
𝑆𝑜𝑢𝑡

𝐵
 (3)

where 𝑇𝑟 is the response delay and 𝑆𝑜𝑢𝑡 is the size of output data; and

𝑇𝑤𝑎𝑖𝑡 =
𝐿𝑒

𝜆𝑒 (4)

where 𝑇𝑤𝑎𝑖𝑡 is the waiting time, 𝐿𝑒 is the average number of waiting tasks, and λ𝑒 is arrival

rate of tasks.

968 Alqarni et al.: A Survey of Computational Offloading in Cloud/Edge-based Architectures:
Strategies, Optimization Models and Challenges

2) Energy: Includes transmission energy, idle energy, and response energy, which is

calculated as:

𝐸𝑡 = 𝑇𝑡 × 𝑝𝑡 (5)

where 𝐸𝑡 is the transmission energy and 𝑝𝑡 is the transmission power of a mobile device in

watts;

𝐸𝑖 = 𝑇𝑝 × 𝑝𝑖 (6)

where 𝐸𝑖 is the idle energy of the edge node and 𝑝𝑖 is the idle power of the edge node in watts;

and

𝐸𝑟 = 𝑇𝑟 × 𝑝𝑟 (7)

where 𝐸𝑟 is the response energy and 𝑝𝑟 is the response power of the edge node in watts.

3) Cost:

𝐶 = 𝑇𝑝 × 𝑅𝑒𝑠𝐶𝑜𝑠𝑡 (8)

where 𝐶 is the payment cost of the offloading and ResCost is the payment cost of the processor

in a second of time.

On the other hand, other parameters such as load balancing, number of iterations, queue

congestion, or resource utilization have rarely been investigated, and scalability has never been

considered in AI solution research.

 4. Discussion, Open Issues, and Future Directions

This section highlights the challenges of computation offloading in cloud/edge-based

architectures, discusses the open research issues, and explores future research directions.

It has been shown in this research that in recent years, optimization techniques have been

proposed to optimize offloading decisions, specifically Swarm Intelligence (SI) models since

they provide a better fit for the distributed and dynamic aspect of edge computing. Indeed, SI

produces a better solution in the shortest time, which satisfies the requirements of real-time

applications. The analyses conducted in this paper showed that many researchers have

investigated offloading, specifically in MCC. These models should be adapted from the current

centralized architecture into a more distributed architecture using edge layers. Moreover, most

studies have focused on cost, latency, or energy reduction but have not investigated them all

in the same research. Additionally, different models have generally focused on different

objectives. However, it is crucial to provide a solution that optimizes as many objectives as

possible. Based on the in-depth study of the main proposed models, the current researches

suggest focusing on many parameters, particularly energy, payment cost, time, dynamic

network congestion, etc.

It is important to note that there are still several open issues in the offloading process that

need to be investigated by the research community. These issues include resource allocation

for the offloaded tasks even in edge servers or virtual machines. Indeed, it is a challenge to

allocate resources at a lower cost in terms of time and energy. Furthermore, mobile devices

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 3, March 2021 969

may lose their connection because of their mobility while sending /receiving data. Therefore,

offloading models should produce fault-tolerant mechanisms to resend the lost data, which

also allows minimizing the response time and energy consumption. As a result, local and

global convergence between mobile devices and edge nodes and load balancing should be

investigated. Moreover, offloading models need to be further automated to discover network

areas, new nodes, lost components, etc. This will make the offloading process more efficient.

One of the most leading research directions is to combine the SI-based offloading theory

with edge computing to enhance current centralized solutions and adapt them to the distributed

schema while considering multiple objectives. As discussed earlier, cuckoo search appears to

be a suitable algorithm for solving multi-objective optimization in offloading since it achieves

good performance in this area compared with other AI algorithms as shown in [47] and [52].

As a result, applying Cuckoo to an edge-based architecture would enhance the offloading

process and allow for more robust solutions to support mobile devices in executing highly

intensive applications. Moreover, the computational offloading to the edge can be improved

by combining CSA with parallel computing between edges, which maximize the computation

capacity and minimize time as well.

It is also important to consider the mobility aspect of nodes. Thus, considering historical

movement data may enhance the offloading decisions. Such information can be stored at edge

nodes and used to predict mobile locations thus enhancing the offloading decisions. Prediction

models may be used along with the optimization theory to enhance the offloading process.

Finally, security and privacy are still challenging since the offloaded tasks will go through

the network. AI-based models can be used also to predict certain attacks and change the

offloading decision accordingly.

5. Conclusion

The number of mobile device users is increasing. Indeed, mobile device usage has been

growing exponentially in recent years. Mobile devices should be able to support real-time

applications such as gaming, e-commerce, healthcare, etc. Furthermore, mobile devices users

expect as high a Quality of Service (QoS) as desktop-level applications. However, real-time

applications require additional resources including storage capacity, computation power, and

battery. In order to overcome the limitations of these resources in mobile devices, offloading

is used to alleviate mobile tasks by sending all/some of them into rich resources such as cloud

or edge servers to be processed there and then returned to the mobile devices. However,

computational offloading also consumes time and energy, which are critical to the success of

real-time applications.

This paper investigated different computational offloading models and compared them in

order to identify the offloading parameters that need to be optimized. Based on these analyses,

a taxonomy of optimization offloading strategies was proposed. Moreover, this study

conducted a comparison of several optimization techniques used to optimize the offloading

decision, as well as a comparison of several AI algorithms used in the computational

offloading process in terms of payment cost, time, energy, etc.

References

[1] Mobile Action Team, “2018 App Industry Report & Trends to Watch for 2019,” Mobile Action

Blog, Dec. 2018. Article (CrossRef Link)

970 Alqarni et al.: A Survey of Computational Offloading in Cloud/Edge-based Architectures:
Strategies, Optimization Models and Challenges

[2] T. F. da Silva Pinheiro, F. A. Silva, I. Fé, S. Kosta, and P. Maciel, “Performance prediction for

supporting mobile applications’ offloading,” Journal Supercomputing, vol. 74, no. 8, pp. 4060-

4103, Aug. 2018. Article (CrossRef Link)

[3] S. E. Mahmoodi, K. Subbalakshmi, and R. N. Uma, Spectrum-Aware Mobile Computing:

Convergence of Cloud Computing and Cognitive Networking, Springer International Publishing,

2019. Article (CrossRef Link)

[4] F. Gu, J. Niu, Z. Qi, and M. Atiquzzaman, “Partitioning and offloading in smart mobile devices

for mobile cloud computing: State of the art and future directions,” Journal of Network and

Computer Applications, vol. 119, pp. 83-96, Oct. 2018. Article (CrossRef Link)

[5] D. Satria, D. Park, and M. Jo, “Recovery for overloaded mobile edge computing,” Future

Generation Computing Systems, vol. 70, pp. 138-147, May 2017. Article (CrossRef Link)

[6] A. Mohammad, S. Zeadally and K. A. Harris, “Offloading in fog computing for IoT: Review,

enabling technologies, and research opportunities,” Future Generation Computing Systems, vol.

87, pp. 278-289, 2018. Article (CrossRef Link)

[7] Y. Wang, M. Sheng, X. Wang, L. Wang, and J. Li, “Mobile-Edge Computing: Partial Computation

Offloading Using Dynamic Voltage Scaling,” IEEE Transactions on Communications, vol. 64,

no. 10, pp. 4268-4282, Oct. 2016. Article (CrossRef Link)

[8] E. Ahmed, A. Gani, M. Sookhak, S. H. Ab Hamid, and F. Xia, “Application optimization in mobile

cloud computing: Motivation, taxonomies, and open challenges,” Journal of Network Computer

Applications, vol. 52, pp. 52-68. Article (CrossRef Link)

[9] T. Zhang, “Data Offloading in Mobile Edge Computing: A Coalition and Pricing Based

Approach,” IEEE Access, vol. 6, pp. 2760-2767, 2018. Article (CrossRef Link)

[10] Z. Xu, X. Liu, G. Jiang, and B. Tang, “A time-efficient data offloading method with privacy

preservation for intelligent sensors in edge computing,” EURASIP Journal Wireless

Commununications Networking, vol. 2019, no. 1, p. 236, Oct. 2019. Article (CrossRef Link)

[11] D. Liu, L. Khoukhi, and A. Hafid, “Prediction-Based Mobile Data Offloading in Mobile Cloud

Computing,” IEEE Transactions Wireless Communications, vol. 17, no. 7, pp. 4660-4673, July

2018. Article (CrossRef Link)

[12] M. A. Khan, “A survey of computation offloading strategies for performance improvement of

applications running on mobile devices,” Journal of Network Computer Applications, vol. 56, pp.

28-40, 2015. Article (CrossRef Link)

[13] D. Kovachev, T. Yu, and R. Klamma, “Adaptive Computation Offloading from Mobile Devices

into the Cloud,” in Proc. of 2012 IEEE 10th International Symposium on Parallel and Distributed

Processing with Applications, pp. 784-791, July 2012. Article (CrossRef Link)

[14] B. G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “CloneCloud: elastic execution between

mobile device and cloud,” in Proc. of the 6th Conference on Computer, pp. 301-314, 2011.

 Article (CrossRef Link)

[15] P. D. Nguyen, V. N. Ha, and L. B. Le, “Computation Offloading and Resource Allocation for

Backhaul Limited Cooperative MEC Systems,” in Proc. of the 90th Vehicular Technology

Conference(VTC2019-Fall), pp. 1-6, Sep. 2019. Article (CrossRef Link)

[16] M. Aazam, S. Zeadally, and K. A. Harras, “Offloading in fog computing for IoT: Review, enabling

technologies, and research opportunities,” Future Generation Computing Systems, vol. 87, pp.

278-289, Oct. 2018. Article (CrossRef Link)

[17] F. Wang, B. Diao, T. Sun, and Y. Xu, “Data Security and Privacy Challenges of Computing

Offloading in FINs,” IEEE Network, vol. 34, no. 2, pp. 14-20, Mar. 2020. Article (CrossRef Link)

[18] S. R. Behera, N. Panigrahi, S. Bhoi, A. Sahani, J. Mohanty, D. Sahoo, A. Maharana, L. P. Kanta,

and P. Mishra, “A Novel Decision Making Strategy for Computation Offloading in Mobile Edge

Computing,” in Proc. of 2020 International Conference on Computer Science, Engineering and

Applications (ICCSEA), Mar. 2020, pp. 1-5. Article (CrossRef Link)

[19] K. Akherfi, M. Gerndt, and H. Harroud, “Mobile cloud computing for computation offloading:

Issues and challenges,” Applied Computing Informatics, vol. 14, no. 1, pp. 1-16, Jan. 2018.

 Article (CrossRef Link)

about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 3, March 2021 971

[20] K. Peng, B. Zhao, S. Xue, and Q. Huang, “Energy- and Resource-Aware Computation Offloading

for Complex Tasks in Edge Environment,” Complexity, Mar. 26, 2020. Article (CrossRef Link)

[21] P. Shu, F. Liu, H. Jin, M. Chen, F. Wen, Y. Qu, and B. Li, “eTime: Energy-efficient transmission

between cloud and mobile devices,” in Proc. of IEEE Annual Joint Conference: INFOCOM, pp.

195-199, 2013. Article (CrossRef Link)

[22] W. Zhang, Y. Wen, K. Guan, D. Kilper, H. Luo, and D. O. Wu, “Energy-Optimal Mobile Cloud

Computing under Stochastic Wireless Channel,” IEEE Transitions on Wireless Communications,

vol. 12, no. 9, pp. 4569-4581, Sep. 2013. Article (CrossRef Link)

[23] S. Kosta, A. Aucinas, Pan Hui, R. Mortier, and Xinwen Zhang, “ThinkAir: Dynamic resource

allocation and parallel execution in the cloud for mobile code offloading,” in Proc. of Annual Joint

Conference: IEEE INFOCOM, pp. 945-953, 2012. Article (CrossRef Link)

[24] A. Khanna, A. Kero, and D. Kumar, “Mobile cloud computing architecture for computation

offloading,” in Proc. of the 2nd International Conference on Next Generation Computing

Technologies (NGCT), Oct. 2016, pp. 639-643, 2016. Article (CrossRef Link)

[25] G. Orsini, D. Bade, and W. Lamersdorf, “Computing at the Mobile Edge: Designing Elastic

Android Applications for Computation Offloading,” in Proc. of the 8th IFIP Wireless and Mobile

Networking Conference (WMNC), pp. 112-119, 2015. Article (CrossRef Link)

[26] C. Meurisch, J. Gedeon, T. A. B. Nguyen, F. Kaup, and M. Muhlhauser, “Decision Support for

Computational Offloading by Probing Unknown Services,” in Proc. of the 26th International

Conference on Computer Communication and Networks (ICCCN), pp. 1-9, 2017.

 Article (CrossRef Link)

[27] K. Habak, M. Ammar, K. A. Harras, and E. Zegura, “Femto Clouds: Leveraging Mobile Devices

to Provide Cloud Service at the Edge,” in Proc. of IEEE 8th International Conference on Cloud

Computing, pp. 9-16, 2015. Article (CrossRef Link)

[28] Y. Liu, H. Yu, S. Xie, and Y. Zhang, “Deep Reinforcement Learning for Offloading and Resource

Allocation in Vehicle Edge Computing and Networks,” IEEE Transitions on Vehicular

Technology, vol. 68, no. 11, pp. 11158-11168, Nov. 2019. Article (CrossRef Link)

[29] L. Huang, S. Bi, and Y. J. A. Zhang, “Deep Reinforcement Learning for Online Computation

Offloading in Wireless Powered Mobile-Edge Computing Networks,” IEEE Transitions on

Mobile Computing, pp. 2581-2593, 2020. Article (CrossRef Link)

[30] M. Chen and Y. Hao, “Task offloading for mobile edge computing in software defined ultra-dense

network,” IEEE Journal of Selected Areas in Communications, vol. 36, no. 3, pp. 587-597, 2018.

Article (CrossRef Link)

[31] S. Kiranyaz, T. Ince, and M. Gabbouj, “Multidimensional Particle Swarm Optimization for

Machine Learning and Pattern Recognition,” Springer-Verlag Berlin Heidelberg, vol. 15, 2014.

Article (CrossRef Link)

[32] J. Branke, K. Deb, K. Miettinen, and R. Slowiński, “Multiobjective optimization: Interactive and

evolutionary approaches”, Springer-Verlag Berlin Heidelberg, vol. 5252, 2008.

 Article (CrossRef Link)

[33] M. Cavazzuti, “Deterministic optimization,” in Optimization Methods, Springer-Verlag Berlin

Heidelberg, pp. 77-102, 2013. Article (CrossRef Link)

[34] P. Kunche and K. V. V. S. Reddy, “Heuristic and Meta-Heuristic Optimization,” in Metaheuristic

Applications to Speech Enhancement, Springer International Publishing, pp. 17-24, 2016.

 Article (CrossRef Link)

[35] Sastry K., Goldberg D.E., Kendall G, “Genetic Algorithms,” in Search Methodologies:

Introductory Tutorials in Optimization and Decision Support Techniques, Boston, MA, USA:

Springer US, pp. 97-125, 2005. Article (CrossRef Link)

[36] O. Zedadra, A. Guerrieri, N. Jouandeau, G. Spezzano, H. Seridi, and G. Fortino, “Swarm

intelligence-based algorithms within IoT-based systems: A review,” Journal of Parallel

Distributed Computing, vol. 122, pp. 173-187, Dec. 2018. Article (CrossRef Link)

[37] L. Liu, Z. Chang, X. Guo, S. Mao, and T. Ristaniemi, “Multiobjective Optimization for

Computation Offloading in Fog Computing,” IEEE Internet Things of Journal, vol. 5, no. 1, pp.

283-294, Feb. 2018. Article (CrossRef Link)

about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
https://doi.org/10.1007/0-387-28356-0_4
about:blank

972 Alqarni et al.: A Survey of Computational Offloading in Cloud/Edge-based Architectures:
Strategies, Optimization Models and Challenges

[38] X. Zhao, L. Zhao, and K. Liang, “An Energy Consumption Oriented Offloading Algorithm for

Fog Computing,” in Proc. of International Conference on Heterogeneous Networks for Quality,

Reliability, Security and Robustness, pp. 293-30, 2017. Article (CrossRef Link)

[39] W. Du, T. Lei, Q. He, W. Liu, Q. Lei, H. Zhao, and W. Wang, “Service Capacity Enhanced Task

Offloading and Resource Allocation in Multi-Server Edge Computing Environment,” ArXiv

Prepr. ArXiv190304709, 2019. Article (CrossRef Link)

[40] T. T. Vu, N. Van Huynh, D. T. Hoang, D. N. Nguyen, and E. Dutkiewicz, “Offloading energy

efficiency with delay constraint for cooperative mobile edge computing networks,” in Proc. of

IEEE Global Communications Conference (GLOBECOM), pp. 1-6, 2018. Article (CrossRef Link)

[41] J. Xu, Z. Hao, and X. Sun, “Optimal Offloading Decision Strategies and Their Influence Analysis

of Mobile Edge Computing,” Sensors, vol. 19, no. 14, Jan. 2019. Article (CrossRef Link)

[42] Y. Yang, Y. Ma, W. Xiang, X. Gu, and H. Zhao, “Joint optimization of energy consumption and

packet scheduling for mobile edge computing in cyber-physical networks,” IEEE Access, vol. 6,

pp. 15576-15586, 2018. Aricle (CrossRef Link)

[43] S. Dai, M. Liwang, Y. Liu, Z. Gao, L. Huang, and X. Du, “Hybrid Quantum-Behaved Particle

Swarm Optimization for Mobile-Edge Computation Offloading in Internet of Things,” in Proc. of

International Conference on Mobile Ad-hoc and Sensor Networks, pp. 350-364, 2018.

 Article (CrossRef Link)

[44] S. Rashidi and S. Sharifian, “A hybrid heuristic queue based algorithm for task assignment in

mobile cloud,” Future Generation Computing Systems, vol. 68, pp. 331-345, Mar. 2017.

 Article (CrossRef Link)

[45] R. Xu, Y. Wang, Y. Chen, Y. Zhy, Y. Xie, A. S. Sani, and D. Yuan, “Improved Particle Swarm

Optimization Based Workflow Scheduling in Cloud-Fog Environment,” in Proc. of International

Conference on Business Process Management Workshops, vol. 342, pp. 337-347, 2019.

 Article (CrossRef Link)

[46] F. Ramezani, J. Lu, and F. Hussain, “Task Scheduling Optimization in Cloud Computing Applying

Multi-Objective Particle Swarm Optimization,” in Proc. of Service-Oriented Computing, vol.

6470, pp. 237-251, 2013. Article (CrossRef Link)

[47] A. A. Alexander and D. L. Joseph, “An Efficient Resource Management for Prioritized Users in

Cloud Environment Using Cuckoo Search Algorithm,” Procedia Technol., vol. 25, pp. 341-348,

2016. Article (CrossRef Link)

[48] P. Kaur and S. Mehta, “Efficient computation offloading using grey wolf optimization algorithm,”

in Proc. of AIP Conference Proceedings, 2019. Article (CrossRef Link)

[49] M. Goudarzi, M. Zamani, and A. T. Haghighat, “A fast hybrid multi-site computation offloading

for mobile cloud computing,” Journal of Network and Computer Applications, vol. 80, pp. 219-

231, Feb. 2017. Article (CrossRef Link)

[50] F. Guo, H. Zhang, H. Ji, X. Li, and V. C. M. Leung, “Energy Efficient Computation Offloading

for Multi-Access MEC Enabled Small Cell Networks,” in Proc. of IEEE International Conference

on Communications Workshops (ICC Workshops), pp. 1-6, 2019. Article (CrossRef Link)

[51] L. N. T. Huynh, Q. V. Pham, X-Q. Pham, T. D. T. Nguyen, M. D. Hossain, and E. N. Huh,

“Efficient Computation Offloading in Multi-Tier Multi-Access Edge Computing Systems: A

Particle Swarm Optimization Approach,” Applied Science, vol. 10, no. 1, Dec. 2019.

 Article (CrossRef Link)

[52] F. Li, H. Yao, J. Du, C. Jiang, and F. R. Yu, “Green Communication and Computation Offloading

in Ultra-Dense Networks,” in Proc. of 2019 IEEE Global Communications Conference

(GLOBECOM), pp. 1-6, Dec. 2019. Article (CrossRef Link)

[53] N. Min-Allah, M. B. Qureshi, S. Alrashed, and O. F. Rana, “Cost efficient resource allocation for

real-time tasks in embedded systems,” Sustainable Cities Society, vol. 48, July 2019.

 Article (CrossRef Link)

[54] C. Arun and K. Prabu, “An efficient job sharing strategy for prioritized tasks in mobile cloud

computing environment using ASC-JS Algorithm,” Journal of Theoretical and Applied

Information Technolgoy, vol. 97, no. 4, pp. 1-15, 2005. Article (CrossRef Link)

about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 3, March 2021 973

Manal Alqarni received the bachelor’s degree in information technology from King

Abdulaziz University, Jeddah, Saudi Arabia. She is currently a Master student at King

Abdulaziz University. She is teaching assistant in Taif University. Her research interests

include networks, artificial intelligence and offloading.

Asma Cherif received her MS. and Ph.D. degrees in computer science from Lorraine

University, France in 2008 and 2012 respectively. She conducted her research at INRIA-

LORIA research center of Nancy, France. She is currently associate professor in the Faculty

of Computing and Information Technology at King Abdulaziz University (Saudi Arabia).

Her current research interests include distributed, collaborative, and real time systems,

security, cloud/edge computing, and AI.

Entisar Alkayal received the Ph.D. degree from Southampton University, UK, in 2018.

She is currently the supervisor of the Information Technology department in the faculty of

Computing and information technology at Rabigh branch. Her research interests include

key technologies in Internet of Things (IoT) and Cloud Computing.

