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Abstract 

 

In recent years, mobile devices have become an essential part of daily life. More and 

more applications are being supported by mobile devices thanks to edge computing, 

which represents an emergent architecture that provides computing, storage, and 

networking capabilities for mobile devices. In edge computing, heavy tasks are offloaded 

to edge nodes to alleviate the computations on the mobile side. However, offloading 

computational tasks may incur extra energy consumption and delays due to network 

congestion and server queues. Therefore, it is necessary to optimize offloading decisions 

to minimize time, energy, and payment costs.  

In this article, different offloading models are examined to identify the offloading 

parameters that need to be optimized. The paper investigates and compares several 

optimization techniques used to optimize offloading decisions, specifically Swarm 

Intelligence (SI) models, since they are best suited to the distributed aspect of edge 

computing. Furthermore, based on the literature review, this study concludes that a 

Cuckoo Search Algorithm (CSA) in an edge-based architecture is a good solution for 

balancing energy consumption, time, and cost. 

 

 

Keywords: Offloading, Optimization, Swarm Intelligence, MEC, Edge, Cloud Computing 

about:blank
mailto:acherif@.kau.edu.sa


KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 3, March 2021                            953 

1. Introduction 

Over the last decade, mobile computing has been growing exponentially. According to [1], 

78.1 billion people were using mobile devices in 2017. It is expected that this number will 

reach 258.2 billion by 2022 [1]. Indeed, mobile devices as smartphones, tablets, or even 

sensors provide a wide range of services and applications to end-users [2]. For example, real-

time applications (such as e-commerce applications, gaming applications, and healthcare 

applications) that require significant computing resources for a high level of responsiveness, 

are becoming increasingly managed by these mobile devices [2]. However, mobile devices 

face a significant challenge because they lack certain crucial resources, particularly those 

related to storage capacity, computation power, bandwidth, and battery. 

The Mobile Cloud Computing (MCC) paradigm was introduced as a way to overcome these 

limitations through the integration of mobile computing and cloud computing [2]. The 

paradigm migrates the computation and data of mobile applications into cloud data centers, 

which reduces mobile terminal overhead [3]. The cloud infrastructure in MCC is based on the 

idea of a pool of resources made available to end-users through several deployment models 

such as public and private clouds and services models. Advantages of the cloud include its 

position as a pay per use model that requires minimal management effort, etc. [4]. 

As mobile applications have become more ubiquitous in daily life, the requirement for high 

computation and short response time has also increased. However, the centralization of MCC 

increases the delay of computation responses, which harms the functionality of real-time 

applications. To address this issue, the Mobile Edge Computing (MEC) paradigm was 

proposed in September 2013 by the European Telecommunication Standard Institute (ETSI). 

MEC has a decentralized architecture based on three layers, which are the mobile device layer, 

the edge layer, and the cloud layer, as shown in Fig. 1. According to this paradigm, mobile 

devices can offload their operations and data into the edge layer through wireless 

communication to minimize the delays incurred by MCC. 

MEC architecture offers MCC services through a Radio Access Network (RAN) at the edge 

layer of the mobile network, which is closer to mobile devices. MEC servers make the 

computations at MEC servers in base stations of a RAN, which reduces the occurrence of 

bottlenecks at data centers [2]. 

 

 
Fig. 1.  MEC architecture [5] 

 

Computational offloading has been proposed as a way of overcoming the resource 

limitations of mobile devices. Computational offloading is defined as the process of sending a 

task and related data to remote rich resources like cloud servers or edge servers to be processed 

as needed [2]. Several factors affect the offloading decision, including local device resources 

such as CPU, storage, and battery consumption, as well as delay in transformation through the 

network and the magnitude of the transferred data [3]. 
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The MEC paradigm has emerged as the most popular model for mobile application 

offloading due to its capacity to reduce execution time, energy consumption, and delays. 

However, offloaded tasks may still face some issues such as waiting a long time in queues and 

network congestion. Therefore, it is necessary to optimize the offloading decisions to save 

time, energy, and cost [3]. 

Several studies have discussed MCC from several perspectives in order to review 

computation offloading. For instance, Gu et al. [4] reviewed enabling techniques and different 

computational resources used for partitioning and offloading. Besides, Azam [6] examined the 

technologies used for offloading in fog computing; Wang et al. [7]  investigated computation 

offloading in MEC without considering optimization techniques, and Satria et al. [8] examined 

the optimization techniques applied in MCC. 

Though many approaches have been proposed for computation offloading in the MCC 

architecture, there is a lack of a comparative study between these solutions. Moreover, none 

of the previous reviews has discussed the optimization techniques for computation offloading 

in MEC.  Meanwhile, it is required to investigate AI-based models to fill the gap and propose 

a model that suits the characteristics of distributed edge-based architectures which serves 

distributed architectures besides QoS of real-time applications. 

For these reasons, this paper investigates both offloading in general and its optimization 

models, specifically AI-based ones, with an emphasis on architectural design to identify the 

main parameters that should be taken into account for an optimized offloading model that fits 

edge computing. Thus, the paper offers an in-depth study of offloading and valuable support 

for researchers to investigate the optimization of computational offloading. 

The main contributions of this paper are: 

1) The presentation of an overview of existing literature and research related to 

computational offloading strategies including a comparison of offloading strategies in terms 

of architecture, application partitioning, resource allocation decisions, researchers’ 

contributions, advantages, and disadvantages. 

2) The provision of a comprehensive taxonomy of optimized offloading strategies. 

3) A comparison of several AI algorithms used in the computational offloading process in 

terms of payment cost, time, energy, scalability, resource utilization, queue congestion, and 

the number of iterations. 

The remainder of this article is organized as follows: A general overview of offloading is 

presented in Section 2. In Section 3, the optimization offloading models are surveyed and 

discussed. In Section 4, the main challenges and some future directions are presented. Finally, 

Section 4 concludes the paper. 

2. General Overview on Offloading 

The following section presents the main offloading types, strategies, and partitioning processes. 

2.1 Offloading Types 

In general, there are two main types of offloading: data offloading and computation offloading. 

Data offloading is used to transfer data from a mobile device, which has limited storage and 

capacity, into a repository located in the cloud. Zhang [9] investigated the process of data 

offloading from multi-mobile devices to multi-MEC servers. He proposed a game-centric 

pricing scheme in order to prioritize the data offloading according to mobile device and 

resource allocation through MEC. In addition, Xu et al. [10] investigated both the privacy and 

time consumption of data offloading in the edge system. They proposed a time-efficient 
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offloading method (TEO) that included privacy conservation. According to their proposed 

method, they used an improved Strength Pareto Evolutionary Algorithm (SPEA2) to minimize 

time consumption and maximize the privacy of data. The experimental results demonstrated 

the reliability and efficiency of the TEO model. Similarly, Liu et al. [11] sought to minimize 

the cost of data offloading by proposing hybrid mobile offloading approaches according to the 

used network (D2D or WIFI). They based their proposal on the Finite Horizon Markov 

Decision Process (FHMDP). They also proposed an offloading algorithm for several time 

requirements (i.e. wide or tight). Furthermore, they used a monotone offloading algorithm to 

minimize the complexity of the offloading process. 

Computation offloading is used to process intensive applications remotely in order to obtain 

benefits from powerful resources in cloud (or edge) servers that overcome the CPU and battery 

limitations on the mobile side [12]. In addition, the computation offloading can be applied in 

different infrastructures, such as MCC, MEC, and fog, as shown in Fig. 2. 

 

 
Fig. 2.  Offloading architecture 

 

Computation offloading can be static or dynamic. Static offloading first estimates 

offloading performance using offline profiling or models of performance estimation. Then, the 

application is partitioned into two main parts (locally and remotely executed), as presented in 

Fig. 3(a) [12]. The dynamic offloading (see Fig. 3(b)) starts with static analysis of the 

application’s code and the required resources. Then, at run-time, dynamic profiling is 

conducted to partition the application into two main parts (locally and remotely executed) [12]. 

 

 
(a) Static offloading    (b) Dynamic offloading 

Fig. 3.  Static and dynamic offloading 
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2.2 Offloading Strategies 

The main offloading modes are binary and partial, as shown in Fig. 4. In the binary mode, the 

task is offloaded without partitioning [13-18]. On the other hand, the partial offloading mode 

includes task partitioning. So, some parts are processed locally, and some are offloaded 

remotely [19-21]. The partial offloading strategy can be classified into three categories: static, 

dynamic, or hybrid, as discussed in the next section. 
 

 
Fig. 4.  Offloading strategies 

 

It is important to note that partial offloading is more efficient. It has become the most used 

strategy in current frameworks because it reduces energy consumption, queue overhead, and 

transformation delay [4]. 

To achieve partial offloading, the application should be partitioned into different parts 

based on a specific granularity. This can be done statically, dynamically, or both. Static 

application partitioning consists of dividing the application into parts. This should be carried 

out by the developer at the design phase. Static partitioning improves the resource allocation 

process in terms of time because it reduces the partitioning time. However, it cannot be adapted 

easily to run-time changes such as environmental changes (bandwidth, resource conditions, 

etc.) [4]. 

Unlike static partitioning, dynamic partitioning splits the application into tasks at run time. 

It can be easily adapted to environmental changes automatically. Nevertheless, this 

partitioning technique is more challenging and time-consuming. An example of a framework 

that uses dynamic partitioning is the one suggested by Kovachev et al. [13]: a Mobile 

Augmentation Cloud Services (MACS) middleware that can be integrated with an existing 

Android application model to provide an adaptive model that allows for elastic offloading from 

mobile devices into the cloud. According to this model, a service manager is used to register 

each service. When an application invokes a service, the Android platform will create a proxy 

in that service. Another example is Clonecloud proposed by Chun et al. [14], which integrates 

both static application analyses and dynamic application partitioning in order to achieve the 

advantages of both. 

2.3 Computational Offloading Challenges and Issues 

This section presents the main challenges that appear in MEC environments through the 

computational offloading process. 

- Resource allocation: One of the main challenges related to determining the number of 

resources needed to execute a task. If the resources are few, then the offload process will be 
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most encouraged. On the other hand, when the available resources are more than what the 

service requires, then the system will be under-utilized [15]. 

- Scalability: Real-time applications are often executed by various users at the same time, 

which is handled by different algorithms responsible for many requests from users. However, 

to allow the application to scale up without harm, the offloading process must be optimized 

[16]. 

- Security: Through the offloading process, tasks and users’ data are moved through the 

network, which increases the risk of data theft and misuse. To overcome this issue, it is 

necessary to involve a trustworthy entity when the offloading decision is made [17]. 

- The trade-off of energy consumption: The offloading process itself consumes energy and 

bandwidth, so the offloading decision must be made according to this trade-off [16]. 

- Decision making: It is a challenge to decide whether to offload a task due to several 

parameters, such as delay, energy, or payment costs [18]. 

- Availability: Mobile devices have to connect to the edge/cloud all the time, which is 

challenging due to lack of network coverage, network congestion, low bandwidth, and any 

other network-related failures [16]. 

- Mobility: This presents a significant challenge when connecting to the edge [19].  

- Load balancing: The edge node or datacentre may be overloaded at any time, which leads 

to delays and, in some situations, incorrect results. To avoid this, load-balance is used to share 

tasks with other edge nodes that are underloaded [15]. 

- Resource utilization: The number of resources on the edge is limited compared to the cloud 

infrastructure. Thus, resource utilization management is required in order to gain the most 

benefits from limited resources without causing system overhead [20]. 

The next sections present the main offloading frameworks proposed in the existing 

literature. 

2.4 Main Computational Offloading Frameworks 

This section investigates the main computational offloading frameworks proposed by 

researchers to enhance different parameters such as time, energy, scalability, etc. Some of 

them are investigated in relation to edge and others are investigated in relation to MCC. 

Shu et al. [21] focused on the energy and delay trade-off of data offloading scheduling. 

They proposed the eTime — a strategy of data transmission between mobile devices and the 

cloud in which the offloading decision was conducted online in order to improve scheduling 

and make it time adaptive. To reduce the energy consumed by the communication, the eTime 

used online data traffic information to decide when it would send data remotely. This model 

was based on the energy-delay trade-off algorithm. 

Zhang et al. [22] proposed a theoretical framework to reduce energy consumption based on 

wireless condition parameters for application offloading decisions. They used a threshold 

policy based on the wireless transmission model and the ratio of energy coefficients of the 

computation in both the mobile and cloud environments. 

Kosta et al. [23] proposed ThinkAir, an offloading framework that supported dynamic 

resource allocation. The framework was based on a Virtual Machine (VM) and operated the 

virtualization on the cloud. Overall, their ThinkAir architecture was composed of three 

components: profilers, an application server, and an execution controller. At the mobile device, 

there were profilers (hardware, software, and network) that collected data and sent them to the 

energy prediction model, which dynamically assessed the local run of the task and transmitted 

the results to the execution controller. Then, the offloading decision was made based on data 

such as energy consumption and execution time of the previous tasks. ThinkAir demonstrated 
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many benefits such as reduced energy consumption, reduced execution due to the parallelism 

of the VMs, and improved scalability. However, the authors noted that sensitive applications 

require more security arrangements. 

Khanna et al. [24] proposed a Mobile Computation Offloading (MCO) model that 

offloaded application tasks into the cloud. The MCO was composed of four components, some 

of which worked on the mobile and others on the cloud. On the mobile side, the device profiler 

divided the application into several tasks and categorized them into tasks carried out locally 

or offloaded. Furthermore, the application analyzer component, which worked on the cloud, 

identified the energy and time consumption of the task. Then, it decided whether the task 

should be executed locally or remotely. Also, a network profiler component computed the 

transmission cost of the task. Then, the decision engine in the cloud took input from the 

application analyzer and network profiler to decide whether the task should be offloaded or 

not. According to the simulation results, the offloaded tasks consumed less execution time 

than the local tasks. Besides, with more offloaded tasks the execution time eventually 

increased, and energy consumption decreased. However, the model was not scalable because 

it was affected by the increasing number of tasks. 

Orisini et al. [25] proposed the CloudAware framework for offloading tasks into mobile 

edge computing. They posited that the CloudAware framework would support ad-hoc and real-

time communication and integrates computation offloading with context adaptation using the 

knowledge of developers as well as the component scheme to make the offloading decision. 

However, the authors presented their architecture without implementation or testing. 

Meurisch et al. [26] investigated the problem of how to make an offloading decision for 

unknown systems. To address this issue, they sent a micro-task to the computing system to 

evaluate the computing system and the existing network. Their calculation was based on 

different parameters such as completion time, data size, network bandwidth, and energy 

consumption. Then, to offload larger tasks, they used a polynomial regression model to predict 

the cost and time. The experiments revealed accuracy of up to 85.5% when sending two micro 

tasks to predict the cost and performance. 

Habak et al. [27] created the Femtocloud system, which leveraged from nearby mobile 

devices’ capabilities to produce a collaborative computation cluster in stable environments 

like classrooms and coffee shops where people commonly gather. This framework 

demonstrated the advantage of being more scalable than the cloudlet. In addition, it was based 

on cooperative, unfixed services at the edge layer of the network. The authors’ evaluation of 

their proposed system was based on both experiments and simulations and proved that the 

system was efficient in terms of energy and computation and also reduced latency. 

Liu et al. [28] investigated vehicles as mobile edge servers that could serve mobile devices 

as well as fixed edge servers and proposed a vehicle edge computing operating architecture. 

They formulated an optimization problem to increase the utilization of the system, which they 

converted into a semi-Markov problem in order to manage the dynamic nature of the vehicles, 

communication time, and offloading requests. Furthermore, they used Q-Learning and Deep 

Reinforcement Learning (DRL) to identify the most appropriate policies of resource allocation 

and computation offloading procedures. The evaluation results indicated that their system may 

achieve greater performance than fixed and vehicle systems. 

Huang et al. [29] investigated wireless powered MEC networks. They created a deep 

learning based online offloading algorithm — DROO, which split the optimization problem 

into two sub-problems: resource allocation and offloading decision. Their evaluation results 

demonstrated the successful performance of the proposed algorithm. 

A summary of these main offloading frameworks is presented in Table 1. 
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Table 1. Summary of main offloading frameworks 
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3. Optimization Models for Offloading 

The following section presents a general overview of existing optimization techniques, 

classifications, and applications. This is followed by an investigation of some relevant research 

focused on offloading optimization and a comparison of the proposed frameworks. 

3.1 Overview of Optimization Techniques 

Optimization can be defined as the performance of an action, which can be a formula or a 

model, to make something, like a system or a decision, as perfect as possible. It can also be 

referred to as “a mathematical discipline that concerns the finding of the extreme (minima and 

maxima) of numbers, functions, or systems” [31]. That is, it involves the maximization and 

minimization of functions. Optimization techniques are used to solve an optimization problem 

which can be single- or multi-objective. Single-objective optimization is used to solve a single 

objective function to give one optimal solution; multi-objective optimization is used to solve 

many objectives at the same time and gives many solutions rather than a single optimal 

solution [32, 33]. 

Optimization techniques can be classified as linear and nonlinear programming 

optimization. Linear programming optimization is a linear objective function that seeks to 

maximize or minimize objectives to linear constraints. On the other hand, nonlinear 

programming aims to maximize or minimize nonlinear objective functions [33]. Furthermore, 

nonlinear programming can be classified into deterministic and stochastic, as presented in Fig. 

5 [32, 33]. 

Deterministic optimization methods follow strict mathematical models, which are based on 

linear programming that seeks to guarantee the most accurate and frequent solution, i.e., with 

the same input, it will achieve the same output every time. However, in this case, the optimal 

solution is mostly local and cannot be global. Thus, deterministic optimization methods better 

fit single-objective problems than multi-objective problems [33]. 

On the other hand, stochastic optimization methods do not produce a guaranteed solution, 

because they are based on searches with random variables. Indeed, for every iteration, different 

outputs may be produced for the same input. Nevertheless, although they don’t provide an 

exact solution, stochastic optimization methods have the advantage of being adaptive, i.e., they 
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can be used for any optimization problem either in local or global search. Moreover, they 

produce an approximated solution in an acceptable time [31].  

Stochastic optimization can be classified into two main categories: heuristic and meta-

heuristic algorithms. The evolution of the heuristic category has produced meta-heuristic 

algorithms that combine random processing and global optimization [34]. The meta-heuristic 

category can be further classified into Evolutionary Algorithms (EA) and Swarm Intelligence 

(SI) algorithms [31]. EA are inspired by biological evolution to find the nearest optimal 

solution. They are used to solve local optimization problems using random searches [33]. 

Many EA have been proposed by researchers, including evolution strategies; genetic 

programming, which uses computers to produce solutions as programs; and genetic algorithms, 

which are inspired by biological genetics and their solutions represented as series of strings 

[35]. 

In particular, SI is an artificial intelligence scheme based on self-organized and distributed 

algorithms. It was inspired by the behavior of social animals like birds, fish, and insects, such 

as Particle Swarm Optimization (PSO), Cuckoo Search Algorithm (CSA), Monkey Algorithm 

(MA), etc. [36]. 
 

 
Fig. 5. Optimization techniques 

3.2 Proposed Optimization Models for Offloading Decision 

The following section presents several models that researchers have proposed for optimizing 

the offloading decision. Here, they are classified according to the optimization technique used. 

3.2.1 Deterministic Optimization Models 

Pinherio et al. [2] discussed the cost of accurate offloading decisions for cloud service 

providers. They proposed using a Stochastic Petri Net (SPN) framework, which an extension 

of Petri Net (PN). The role of an SPN is to predict the performance of an application, data 

traffic through the offloading process, and finally the offloading cost. This prediction is made 

at method-call-level, which generates highly accurate estimations. Moreover, an SPN 

considers the network bandwidth used to send and receive methods. It therefore helps 

developers at the design phase to develop their applications with accurate information about 

application performance and cost prediction. 

Wang et al. [7] focused on two main problems: minimizing energy consumption and 

latency. For latency, they proposed offloading tasks from smartphones to Femtoclouds at the 

edge layer. In addition, they argued that tasks could be executed in parallel to reduce time. 
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Moreover, they proposed using Latency-optimal Partial Computation Offloading (LPCO) to 

reduce latency in many cloud server cases. For energy consumption, they used Dynamic 

Voltage Scaling (DVS) technology that adapted smartphone computation speed based on the 

computation load of the device. Moreover, they proposed using an Energy-optimal Partial 

Computation Offloading (EPCO) algorithm to minimize energy consumption. 

Liu et al. [37] investigated the fog layer in MCC. They discussed an offloading multi-

objective optimization problem that emphasized three parameters: energy consumption, 

execution delay, and payment cost. Queuing theory was utilized to solve the weighted 

optimization problem. The problem was formulated to minimize the three parameters 

mentioned above. A scalarization method was used to convert the optimization problem from 

multi- to single-objective. Also, the offloading probability and transmission power were 

reconfigured in order to minimize energy consumption, execution delay, and payment cost. 

Moreover, they used an Interior Point Method (IPM) algorithm in iteration processes to 

increase accuracy. The simulation results showed that the performance of the proposed 

solution was extremely high. However, some results showed that at a certain point, when the 

number of offloading requests increased, the energy consumption and delay increased. 

Zhao et al. [38] examined the computational offloading of mobile devices. They proposed 

using an offloading algorithm for energy consumption oriented to reduce energy besides 

constraints like transmission power and time. In their proposed algorithm, the mobile device 

calculated the energy consumption of offloading to both cloud and fog. Then, it compared 

these to identify the process with the lowest energy consumption. Their algorithm was based 

on an architecture of three layers (mobile device, fog, and cloud). The simulation results 

showed the proposed algorithm achieved higher performance and lower energy consumption 

for one user, and the results for multiple users were left for future research. 

Chen and Hao [30] investigated the optimization of task offloading in an ultra-dense 

network. First, they proposed a system model of a Software Defined Ultra-Dense Network 

(UT-UDN). They aimed to minimize both the task delay and energy consumption by 

formulating a mixed-integer nonlinear programming optimization problem. They proposed 

using a scheme called a Software Defined Task Offloading (SDTO) to break down the 

optimization problem into two sub-problems. The first problem was a resource allocation 

problem which was solved using Karush–Kuhn–Tucker (KKT) conditions. The second one 

was a task placement problem, which was solved by a task placement algorithm. The 

simulation results showed that task delay was reduced by 20% and 30% more energy was 

conserved. 

3.2.2 Heuristic Optimization Models 

Du et al. [39] focused on the optimization of resource allocation at edge servers in order to 

minimize task service costs and maximize the number of clients served per edge. To solve this 

multi-optimization problem, they modified it into a deterministic optimization problem. Then, 

they split it into sub-problems using Lyapunov optimization. They proposed an Online Joint 

Task Offloading and Resource Allocation Algorithm (OJTORA) to solve these sub-problems. 

The experimental results proved that OJTORA obtained greater performance than other 

baseline strategies. However, they didn’t consider the bandwidth condition and mobility of 

client services. 

Thai et al. [40] proposed an approach for using a cooperative mobile edge computing 

network to reduce energy and delay consumption. First, they formulated mixed resource 

allocation and task offloading in MEC. Then, they proposed a relaxed solution with an 

Improved Branch and Bound Algorithm (IBBA) to solve the mixed-integer nonlinear 
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programming problem. They developed two solutions — an Interior Point Method (IPM) and 

an Improved Branch and Bound Algorithm (IBBA) — to identify the optimal solution for edge 

nodes and mobile users. The experiments showed the efficiency of both solutions regarding 

time and energy consumption. 

Xu et al. [41] proposed a system architecture and formulated an optimization problem to 

minimize both energy and time consumption. The proposed system model involved many 

mobile devices, one edge, and one cloud server. They assumed that the bandwidth between 

the three layers was large enough to reject the bottleneck condition. The optimization problem 

was a nonlinear mixed-integer programming problem. To solve it, they proposed two 

algorithms — an Enumeration Algorithm and a Branch and Bound algorithm. The simulation 

showed that the Branch and Bound Algorithm produced better results than the Enumeration 

Algorithm. 

3.2.3 Meta-Heuristic Optimization Models 

Yang et al. [42] focused on minimizing the energy consumption and queue congestion of task 

offloading to MEC. First, they proposed a mobile device classification algorithm to solve the 

offloading decision problem. To solve the queuing congestion problem, they proposed using 

the Promoted by Probability (PBP) mechanism, which organizes the priority of tasks in order 

to reduce energy consumption. Then, they formulated a mixed-integer optimization problem 

to minimize energy consumption and packet delay. They applied the krill herd meta-heuristic 

optimization algorithm to solve the NP-hard optimization algorithm by optimizing the task 

offloading decision while minimizing queuing congestion. The simulation results 

demonstrated the high performance of their solution. 

Dai et al. [43] investigated the resource allocation problem in wireless communication 

technology at a MEC. At their system, the Access Node (AN) and edge-computing server 

schedules carriers and corresponding computation resources. Then, results were sent back to 

the device, which then decided either to offload or not based on these results. However, the 

system model used an Orthogonal Frequency Division Multiplexing (OFDM) system that split 

the existing channel into many sub-carriers to reduce offloaded data stream. The problem was 

presented in a mathematical model and then broken into two sub-problems. The first aimed to 

maximize the difference between a task’s completion time locally and remotely at the MEC, 

and the second sought to compute the maximum uploading rate of the task. To address these 

two problems, the authors proposed a Hybrid Quantum Behavior Particle Swarm Optimization 

(HQPSO) that used the water-filling algorithm in sub-problem two to reduce the dimension of 

the QPSO equation, which enforce the accuracy and speed of the solution. Simulations showed 

that the accuracy and performance of the model were high. However, the model was still 

outperformed by traditional binary searches by 5% regarding saved completion time and 10% 

regarding accuracy. 

Rashidi and Sharifain [44] proposed a model based on Ant Colony Optimization (ACO) 

and Queue Decision Maker (QDM) — known as ACOQDM — for task assignment 

optimization. They aimed to reduce completion time, communication time, power 

consumption, and task drop rate, and improve load balancing through two layers of cloud 

computing (cloudlets and cloud). When the tasks were offloaded to the cloudlet, they were put 

in the proxy’s buffer to be sent to the dispatcher unit, which used a Decision Maker (DM) to 

decide whether to send tasks to cloudlet or cloud serves. The DM used the information 

generated by the repository and QDM and ACO algorithms to build its decision. First, the 

QDM goal was to minimize the response time by computing the probability of assigning a task 

into either a cloudlet or cloud. Then, the ACO used the task assignment probabilities and the 
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communication time between the user and the specific cloudlet as an input to minimize the 

communication time of the whole system. The ACOQDM successfully reduced the response 

time, completion time, transition time, power consumption, and the drop rate of tasks. 

Xu et al. [45] examined the task offloading of workflow applications in fog-cloud 

environments in order to reduce the cost and the time of all tasks. They proposed an algorithm 

for workflow scheduling. The scheduling method was based on an Improved Particle Swarm 

Optimization (IPSO) algorithm and was a PSO algorithm integrated with inertia weight. Inertia 

weight was used to enforce the searching ability of particles from the original PSO. It designs 

the problem as a nonlinear decreasing function of both time and cost in global and local 

practical searchability. The experiments showed that the reduction of cost and time was greater 

than with the original PSO. 

Ramezani et al. [46] proposed a task scheduling model using multi-objective optimization. 

Their solution was based on minimizing execution time, transmission time, and execution cost 

using Multi-Objective PSO (MOPSO), which is suitable for distributed systems. The system 

fulfilled the required service requirements (mainly QoS); however, the study did not 

investigate energy consumption or task prioritization. 

Alexander and Joseph [47] examined computation offloading into cloud data centers. They 

aimed to minimize cost and time and maximize resource utilization. To address this 

optimization problem, they proposed a load-aware resource allocation based on the Cuckoo 

Search Algorithm (CSA). The simulation results proved that the Cuckoo Algorithm reduced 

time and cost and improved resource utilization compared with PSO. 

Kaur and Mehta [48] applied Grey Wolf Optimization (GWO) to optimize the offloading 

plan in order to increase performance and decrease time, cost, and energy. They focused on 

the centralized architecture of cloud datacenters. 

Goudarzi et al. [49] proposed using Fast Hybrid Multi-site Computation Offloading 

(FHMCO) to identify the best application partitioning based on the size of the application in a 

short time. First, the weighted cost model was used to reduce the energy and time consumption 

of the process. Moreover, the authors used two decision algorithms: Optimized Multi-site 

Offloading Problem (OMB&B) and Optimized Multi-site Particle Swarm Optimization 

(OMPSO). OMB&B is usually used to identify the optimal solution for small scale 

applications in a short time, mobile applications, whereas OMPSO is used to search in large 

spaces and produce near-optimal solutions in a reasonable time. The simulation and 

experiments proved that the FHMCO achieved better performance than alternative 

frameworks. However, it was based on a centralized architecture. 

Guo et al. [50] investigated the problem of offloading decision making as well as resource 

and channel allocation. To minimize energy consumption, they used a Genetic Algorithm 

based on a Computation Algorithm (GACA) to solve the mixed-integer non-linear 

programming problem. Their simulation indicated that their solution was slow. 

Huynh et al. [51] focused on minimizing time and energy consumption using resource 

allocation and offloading decision making. Their model environment involved the use of 

multi-user and multi-edge servers in heterogeneous networks. They formulated a mixed-

integer non-linear programming problem of resource allocation and offloading decision 

making. To solve it, they divided it into two subproblems and proposed using a PSO-based 

algorithm (JROPSO) to optimize resource allocation and computation offloading decisions 

jointly. Their simulation results demonstrated the efficiency of the proposed algorithm. 

Li et al. [52] examined green computation in ultra-dense networks using computation 

offloading. They aimed to minimize energy and time consumption by using edge-based 

architecture. Their proposed system involved multi-mobile devices, multi-small base stations 
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(SBS), and one macro-base station (MBS). Each mobile device owned just one task. The 

authors proposed using a computation offloading mechanism based on CSA to solve the non-

linear programming problem. The simulation results showed that the proposed CSA reduced 

both time and energy consumption. 

Min-Allah et al. [53] investigated implementing task scheduling and resource allocation in 

MCC in order to minimize cost and time consumption in the offloading system. The authors 

formulated an optimization problem to reduce both time and execution cost consumption. 

Furthermore, they proposed a Hybrid Genetic and Cuckoo Search algorithm (HGCS) to solve 

the optimization problem. They aimed to find an optimal schedule for a group of real-time 

tasks in an optimal VM in the cloud. The simulation results proved the efficiency of the HGCS 

compared with GA and CSA alone.  

Finally, Arun and Prabu [54] considered job-sharing and load-balance in VMs of MCC. 

They formulated an optimization problem, which is NP-hard, to minimize both time and cost. 

To solve the optimization problem, they proposed using an accelerated CSA to identify a task 

with minimum time and cost. The simulation results proved that the proposed solution was 

stronger than other algorithms in terms of minimizing execution time, job-sharing value, used 

bandwidth, transmission speed, and buffering overhead. 
 

Table 2. Summary of offloading optimization techniques 

Ref. Year Arch. 

Optimiza

tion 

Tech. 

Optimization 

Algo. 
Parameters Method Limitation 

[2] 2018 MCC 
Determinis

tic 
SPN 

Time (communication + 

completion) 

Estimate the application 

performance 

It is not a context-aware offloading 

application + not use energy as a 

metric 

[7] 2015 MEC 
Determinis

tic 
EPCO Time   + energy 

DVS technology to 

optimize the 

computation  offloading 

It focuses on improving the mobile 

device without considering 

computational resources 

[43] 2017 MEC AI HQPSO 
Time + number of 

iterations 
Resource allocation 

5% less than binary search inaccuracy 

assumed a single  task for  advice + single 

thread for CPU 

[37] 2017 Fog 
Determinis

tic 
Weight method 

Time (execution) + 

energy + cost 
Queue theory 

It does not consider the network 

dynamic conditions as data  traffic 

and no  resource allocation 

considered 

[36] 2017 
Cloudlet/ 

Cloud 
AI ACO-GA 

Time  +  energy + 

improving queue drop   

rate + load balance 

Queue theory Centralized architecture 

[44] 2019 Cloud/ Fog AI 

Workflow 

scheduling based on 

IPSO 

Time + cost Task scheduling Centralized architecture 

[46] 2013 Cloud AI MOPSO Time + cost Task scheduling Centralized architecture 

[47] 2016 Cloud AI CSA 
Time + cost + resource 

utilization 

Load aware resource 

allocation 
They only work in one data centre 

[48] 2019 MCC AI GWO Time + energy + cost 
Minimize execution 

cost 

The cost and time still higher than 

the exhaustive approach 

[49] 2017 MCC AI PSO Time + energy 

Offloading partitioning 

based on the size of the 

mobile application 

Centralized architecture 

[38] 2017 Cloud/ Fog 
Determinis

tic 

Optimal energy 

consumption 

algorithm 

Time + energy Resource allocation The model is a single user only 
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[39] 2019 MEC Heuristic Lyapunov 
Time + energy + 

scalability 
Resource allocation Based on static bandwidth allocation 

[40] 2018 MEC Heuristic IBBA Time + energy Resource allocation Not considered the scalability 

[41] 2019 
MEC/Clou

d 
Heuristic 

Enumerating and 

Branch + Bound 

Algorithm 

Time + energy 
Task offloading 

decision 
Low speed of operation 

[42] 2018 MEC 
Meta-

heuristic 
krill herd algorithm 

Time + energy 

+minimize queue 

congestion 

Resource allocation + 

binary offloading 

Not consider network resources + 

heterogeneous of servers in the 

system 

[30] 2018 MEC 
Determini

stic 

KKT + task 

placement 

algorithm 

Time + energy Resource allocation 
Not consider the mobility of the 

users 

[50] 2018 MEC AI GACA Energy Resource allocation The solution is slow 

[51] 2019 MEC AI JROPSO Time + energy 

Resource allocation + 

offloading decision 

making 

Dismiss the waiting and response 

time 

[52] 2019 MEC AI CSA Time + energy 
Green computation + 

computation offloading 

Did not focus on the factors of SDN 

ultra-dense network 

[53] 2019 MCC AI HGCS Time + cost 
Task scheduling + 

resource allocation 
Centralized architecture 

[54] 2019 MCC AI CSA Time and cost 
Job-sharing + load-

balance 
Centralized architecture 

 

3.3 Comparing Existing Solutions 

The aforementioned solutions are summarized in Table 2, which shows that some proposed 

optimization techniques for offloading optimization were deterministic and others were AI-

based. AI-based solutions are usually based on the use of an SI algorithm to optimize the 

offloading process. Indeed, SI supports heterogeneous, global, and distributed environments 

as MEC. Moreover, SI produced automatically, adaptability, and self-organization techniques. 

For this, we investigate these solutions in greater detail in order to select the most appropriate 

one to be applied in the research. To do so, the relevant criteria were defined as follows: 

1) Algorithm: The SI algorithm is used to optimize offloading. 

2) Distribution: Whether the architecture is centralized in a cloud or distributed at the edge  

      layer. 

3) Optimization parameters: The parameters considered in the optimization. 

(1) Time: The total execution and transmission time for each task. 

(2) Energy: The energy consumption for each task (execution and transmission). 

(3) Cost: The payment cost of the application execution. 

(4) Scalability: The ability of the application to scale up without harm. 

(5) Resource utilization: The utilizing of limited resources without causing an overhead of  

           the system. 

(6) Load balance: The ability to share tasks with other edge nodes that are underloaded. 

(7) Queue congestion: The avoiding of queue congestion when the arrival rate of the tasks  

      succeeds the service rate, which causes system overhead. 

(8) No. of iterations: This is related to the completion time of the task. 

Based on the criteria, a comparison between SI-based models is presented in Table 3. 
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Table 3. Offloading techniques applied SI 
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[42] 
krill herd 

algorithm √ X √ √ X √ X √ X 

[43] HQPSO √ X √ √ X X X X √ 

[44] ACO-GA √ X √ √ X X √ √ X 

[45] IPSO √ √ √ X X X X X X 

[46] MOPSO √ √ √ X X X X X X 

[48] CSA X √ √ X X √ X X X 

[48] GWO X X √ √ X X X X X 

[49] PSO X X √ √ X X X X X 

[50] GACA √ X X √ X X X X X 

[51] JROPSO √ X √ √ X X X X X 

[52] CSA √ X √ √ X X X X X 

[53] HGCS X √ √ X X X X X X 

[54] CSA X √ √ X X X X X X 

 

Table 3 shows that most researchers have investigated the MEC environment due to its 

decentralized infrastructure, which facilitates the avoidance of bottleneck issues. Researchers 

have also mainly focused on time rather than energy and payment cost. The mathematical 

equations of these parameters can be presented as follows: 
 
1) Time: Includes processing time, transmission time, waiting time, and response time, which 

is calculated as  

 

𝑇𝑝=
S

𝑓
                                                          (1) 

 

where 𝑇𝑝is the task’s processing time, 𝑆 is the task size, and 𝑓 is the processing computation 

time; 

 

       𝑇𝑡 =
𝑆𝑖𝑛

𝐵
                                                  (2) 

 

where 𝑇𝑡 is the transmission delay, 𝑆𝑖𝑛is the size of the input data, and 𝐵 is the bandwidth 

between a mobile device and the edge node; 

 

                        𝑇𝑟 =
𝑆𝑜𝑢𝑡

𝐵
                                                                 (3) 

 

where 𝑇𝑟 is the response delay and 𝑆𝑜𝑢𝑡 is the size of output data; and 

 

𝑇𝑤𝑎𝑖𝑡  =
𝐿𝑒

𝜆𝑒                                                              (4) 

 

where 𝑇𝑤𝑎𝑖𝑡 is the waiting time, 𝐿𝑒 is the average number of waiting tasks, and λ𝑒 is arrival 

rate of tasks. 
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2) Energy: Includes transmission energy, idle energy, and response energy, which is 

calculated as: 

 

𝐸𝑡 = 𝑇𝑡 × 𝑝𝑡                                                          (5) 

 

where 𝐸𝑡 is the transmission energy and 𝑝𝑡 is the transmission power of a mobile device in 

watts; 

 

𝐸𝑖 = 𝑇𝑝 × 𝑝𝑖                                                         (6) 

 

where 𝐸𝑖 is the idle energy of the edge node and 𝑝𝑖 is the idle power of the edge node in watts; 

and 

 

𝐸𝑟 = 𝑇𝑟 × 𝑝𝑟                                                         (7) 

 

where 𝐸𝑟 is the response energy and 𝑝𝑟 is the response power of the edge node in watts. 

 

3) Cost: 

 

𝐶 = 𝑇𝑝 × 𝑅𝑒𝑠𝐶𝑜𝑠𝑡                                                   (8) 

 

where 𝐶 is the payment cost of the offloading and ResCost is the payment cost of the processor 

in a second of time. 

On the other hand, other parameters such as load balancing, number of iterations, queue 

congestion, or resource utilization have rarely been investigated, and scalability has never been 

considered in AI solution research. 

 4. Discussion, Open Issues, and Future Directions 

This section highlights the challenges of computation offloading in cloud/edge-based 

architectures, discusses the open research issues, and explores future research directions. 

It has been shown in this research that in recent years, optimization techniques have been 

proposed to optimize offloading decisions, specifically Swarm Intelligence (SI) models since 

they provide a better fit for the distributed and dynamic aspect of edge computing. Indeed, SI 

produces a better solution in the shortest time, which satisfies the requirements of real-time 

applications. The analyses conducted in this paper showed that many researchers have 

investigated offloading, specifically in MCC. These models should be adapted from the current 

centralized architecture into a more distributed architecture using edge layers. Moreover, most 

studies have focused on cost, latency, or energy reduction but have not investigated them all 

in the same research. Additionally, different models have generally focused on different 

objectives. However, it is crucial to provide a solution that optimizes as many objectives as 

possible. Based on the in-depth study of the main proposed models, the current researches 

suggest focusing on many parameters, particularly energy, payment cost, time, dynamic 

network congestion, etc. 

It is important to note that there are still several open issues in the offloading process that 

need to be investigated by the research community. These issues include resource allocation 

for the offloaded tasks even in edge servers or virtual machines. Indeed, it is a challenge to 

allocate resources at a lower cost in terms of time and energy. Furthermore, mobile devices 
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may lose their connection because of their mobility while sending /receiving data. Therefore, 

offloading models should produce fault-tolerant mechanisms to resend the lost data, which 

also allows minimizing the response time and energy consumption. As a result, local and 

global convergence between mobile devices and edge nodes and load balancing should be 

investigated. Moreover, offloading models need to be further automated to discover network 

areas, new nodes, lost components, etc. This will make the offloading process more efficient.  

One of the most leading research directions is to combine the SI-based offloading theory 

with edge computing to enhance current centralized solutions and adapt them to the distributed 

schema while considering multiple objectives. As discussed earlier, cuckoo search appears to 

be a suitable algorithm for solving multi-objective optimization in offloading since it achieves 

good performance in this area compared with other AI algorithms as shown in [47] and [52]. 

As a result, applying Cuckoo to an edge-based architecture would enhance the offloading 

process and allow for more robust solutions to support mobile devices in executing highly 

intensive applications. Moreover, the computational offloading to the edge can be improved 

by combining CSA with parallel computing between edges, which maximize the computation 

capacity and minimize time as well.  

It is also important to consider the mobility aspect of nodes. Thus, considering historical 

movement data may enhance the offloading decisions. Such information can be stored at edge 

nodes and used to predict mobile locations thus enhancing the offloading decisions. Prediction 

models may be used along with the optimization theory to enhance the offloading process.  

Finally, security and privacy are still challenging since the offloaded tasks will go through 

the network. AI-based models can be used also to predict certain attacks and change the 

offloading decision accordingly. 

5. Conclusion 

The number of mobile device users is increasing. Indeed, mobile device usage has been 

growing exponentially in recent years. Mobile devices should be able to support real-time 

applications such as gaming, e-commerce, healthcare, etc. Furthermore, mobile devices users 

expect as high a Quality of Service (QoS) as desktop-level applications. However, real-time 

applications require additional resources including storage capacity, computation power, and 

battery. In order to overcome the limitations of these resources in mobile devices, offloading 

is used to alleviate mobile tasks by sending all/some of them into rich resources such as cloud 

or edge servers to be processed there and then returned to the mobile devices. However, 

computational offloading also consumes time and energy, which are critical to the success of 

real-time applications.  

This paper investigated different computational offloading models and compared them in 

order to identify the offloading parameters that need to be optimized. Based on these analyses, 

a taxonomy of optimization offloading strategies was proposed. Moreover, this study 

conducted a comparison of several optimization techniques used to optimize the offloading 

decision, as well as a comparison of several AI algorithms used in the computational 

offloading process in terms of payment cost, time, energy, etc. 
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